zbMATH — the first resource for mathematics

Stability of a layer of liquid flowing down an inclined plane. (English) Zbl 0279.76025

76E05 Parallel shear flows in hydrodynamic stability
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
Full Text: DOI
[1] T. B. Benjamin, Wave formation in laminar flow down an inclined plane,J. Fluid Mech., 2 (1957) 554–574. · Zbl 0078.18003
[2] D. J. Benney, Long waves on liquid films,J. Math and Physics, 45 (1966) 150–155. · Zbl 0148.23003
[3] S. Godunov, On the numerical solution of boundary value problems for systems of linear ordinary differential equations,U spehi Mat. Nauk., 16 (1961) 171–174.
[4] M. Graef,Über die Eigenschaften zwei- und dreidimensionaler Störungen in Rieselfilmen an geneigten Wänden, Mitt. Max-Planck Inst. Strömungsforschung und Aerodyn. Versuchsanstalt, nr. 26, 1966. · Zbl 0209.29201
[5] W. B. Krantz and S. L. Goren, Stability of thin liquid films flowing down a plane,Ind. Eng. Chem. Fundamental 10 (1971) 91–101.
[6] S. P. Lin,Instability of a layer of liquid flowing down an inclined plane at large Reynolds numbers, Ph. Thesis. Univ. of Michigan, 1965.
[7] S. P. Lin, Instability of a liquid film flowing down an inclined plane.Phys. Fluids, 10 (1967) 308–313.
[8] M. J. D. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives,Computer Journal, 7 (1964) 155–162. · Zbl 0132.11702
[9] S. F. Shen, Calculated amplified oscillations in plane Poiseuille and Blasius flows,J. Aero. Sci., 21 (1954) 62–64.
[10] L. H. Thomas, The stability of plane Poiseuille flow,Phys. Rev., 91 (1953) 780–783. · Zbl 0051.17303
[11] A. R. Wazzan, T. Okamura and A. M. O. Smith,Spatial and temporal stability charts for the Falkner-Skan boundary layer profiles, Mc. Donnell Douglas Report No. DAC-67086, 1968.
[12] C. S. Yih, Stability of liquid flow down an inclined plane,Phys. Fluids 6 (1963) 321–334. · Zbl 0116.19102
[13] C. S. Yih,Fluid Mechanics, Mc. Grawhill, 1969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.