×

zbMATH — the first resource for mathematics

On Fourier-Toeplitz methods for separable elliptic problems. (English) Zbl 0277.65065

MSC:
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. D. Bakes, An alternative method of solution of certain tri-diagonal systems of linear equations, Comput. J. 7 (1964), 135 – 136. · Zbl 0229.65031 · doi:10.1093/comjnl/7.2.135 · doi.org
[2] Erwin H. Bareiss, Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices, Numer. Math. 13 (1969), 404 – 424. · Zbl 0174.20401 · doi:10.1007/BF02163269 · doi.org
[3] Friedrich L. Bauer, Ein direktes Iterationsverfahren zur Hurwitz-Zerlegung eines Polynoms, Arch. Elek. Übertr. 9 (1955), 285 – 290 (German).
[4] Friedrich L. Bauer, Beiträge zur Entwicklung numerischer Verfahren für programmgesteuerte Rechenanlagen. II. Direkte Faktorisierung eines Polynoms, Bayer. Akad. Wiss. Math.-Nat. Kl. S.-B. 1956 (1956), 163 – 203 (1957) (German). · Zbl 0078.30602
[5] O. Buneman, A Compact Non-Iterative Poisson Solver, Rep. SUIPR-294, Inst. Plasma Research, Stanford University, 1969.
[6] O. Buneman, Inversion of the Helmholtz (or Laplace-Poisson) Operator in Slab Geometry, Rep. SUIPR-467, Inst. Plasma Research, Stanford University, 1972.
[7] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal. 7 (1970), 627 – 656. · Zbl 0217.52902 · doi:10.1137/0707049 · doi.org
[8] B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub, The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal. 8 (1971), 722 – 736. · Zbl 0231.65083 · doi:10.1137/0708066 · doi.org
[9] J. W. Cooley, P. A. W. Lewis & P. D. Welch, ”The fast Fourier transform algorithm: Programming consideration in the calculation of sine, cosine and Laplace transform,” J. Sound Vib., v. 12, 1970, pp. 315-337. · Zbl 0195.46301
[10] D. J. Evans, An algorithm for the solution of certain tridiagonal systems of linear equations, Comput. J. 15 (1972), 356 – 359. · Zbl 0249.65017 · doi:10.1093/comjnl/15.4.356 · doi.org
[11] D. J. Evans and C. V. D. Forrington, Note on the solution of certain tri-diagonal systems of linear equations, Comput. J. 5 (1962/1963), 327 – 328. · Zbl 0115.34401 · doi:10.1093/comjnl/5.4.327 · doi.org
[12] George E. Forsythe and Cleve B. Moler, Computer solution of linear algebraic systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. · Zbl 0154.40401
[13] J. A. George, ”Block elimination of finite element systems of equations,” Sparse Matrices and Their Applications, edited by D. J. Rose and R. A. Willoughby, Plenum Press, New York, 1972.
[14] J. A. George, The Use of Direct Methods for the Solution of the Discrete Poisson Equation on Non-Rectangular Regions, Computer Science Report 159, Stanford University, 1970.
[15] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput. Mach. 12 (1965), 95 – 113. · Zbl 0139.10902 · doi:10.1145/321250.321259 · doi.org
[16] R. W. Hockney, ”The potential calculation and some applications,” Methods in Computational Physics. Vol. 9, Academic Press, New York, 1970.
[17] Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. · Zbl 0329.65003
[18] M. Malcolm & J. Palmer, A Fast Method for Solving a Class of Tri-Diagonal Linear Systems, Computer Science Report 323, Stanford University, 1972.
[19] W. Proskurowski & O. B. Widlund. (To appear.)
[20] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. · Zbl 0070.10902
[21] J. Rissanen and L. Barbosa, Properties of infinite covariance matrices and stability of optimum predictors, Information Sci. 1 (1968/1969), 221 – 236.
[22] Donald J. Rose, An algorithm for solving a special class of tridiagonal systems of linear equations, Comm. ACM 12 (1969), 234 – 236. · Zbl 0175.15805 · doi:10.1145/362912.362940 · doi.org
[23] Gilbert Strang, Implicit difference methods for initial-boundary value problems, J. Math. Anal. Appl. 16 (1966), 188 – 198. · Zbl 0147.13802 · doi:10.1016/0022-247X(66)90196-X · doi.org
[24] Vidar Thomée, Elliptic difference operators and Dirichlet’s problem, Contributions to Differential Equations 3 (1964), 301 – 324.
[25] O. B. Widlund, ”On the use of fast methods for separable finite difference equations for the solution of general elliptic problems,” Sparse Matrices and Their Applications, edited by D. J. Rose and R. A. Willoughby, Plenum Press, New York, 1972.
[26] Handbook for automatic computation. Vol. II, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. H. Wilkinson and C. Reinsch; Die Grundlehren der Mathematischen Wissenschaften, Band 186.
[27] G. Wilson, Factorization of the covariance generating function of a pure moving average process, SIAM J. Numer. Anal. 6 (1969), 1 – 7. · Zbl 0176.46401 · doi:10.1137/0706001 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.