×

zbMATH — the first resource for mathematics

The inverse problem of estimating heart parameters from cardiograms. (English) Zbl 0276.92011

MSC:
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Scher, A.M.; Young, A.C., The pathways of ventricular depolarization in dogs, Circular res., 4, 461, (1956)
[2] Durrer, D.D.; Van Dam, R.T.; Meijler, F.L.; Arzbacher, R.C.; Mueller, E.J.; Freud, G.E., Electrical activation and membrane action potential of a perfused normal human heart, Circulation, 34, 92, (1966), Read before the American Heart Association in New York, Oct. 1966
[3] Sylvester, R.H.; Kalaba, R.; Collier, C.R.; Bellman, R.; Kagiwada, H., A digital computer model of the vectorcardiogram with distance and boundary effects: simulated myocardial infarctions, American heart journal, 74, 792, (1967)
[4] Sylvester, R.H.; Collier, C.R.; Pearson, R.B., Analog computer model of the vectorcardiograms, Circulation, 31, 45, (1965)
[5] Bellman, R.; Collier, C.; Kagiwada, H.; Kalaba, R.; Sylvester, R., Estimation of heart parameters using skin potentials, Comm. assoc. computing machinery, 7, 7, (1964)
[6] R. Bellman, B.G. Kashef, and R. Vasudevan, Differential quadrature partial differential equations and splines, (to appear). · Zbl 0335.65023
[7] Bellman, R.; Kagiwada, H.; Kalaba, R., Orbit determination as a multipoint boundary value problem and quasilinearisation, Proc. nat. acad. of sciences, 48, 1327, (1962), USA · Zbl 0108.12602
[8] Wilson, F.N.; Bailey, R.H., The electric field of an eccentic dipole in a homogeneous spherical conducting medium, Circulation, 1, 84, (1950)
[9] Bellman, R., Introduction to matrix analysis, (1970), McGraw Hill New York and London · Zbl 0216.06101
[10] Ahlberg, J.H.; Nelson, E.N.; Walsh, J.L., The theory of splines and their applications, (1967), Academic New York and London · Zbl 0158.15901
[11] Kashef, B.G.; Wasudevan, R.; Bellman, R., Splines via dynamic programming, J. math. analysis and appls., 38, (1972) · Zbl 0241.41006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.