zbMATH — the first resource for mathematics

On computing reciprocals of power series. (English) Zbl 0274.65009

65D20 Computation of special functions and constants, construction of tables
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
Full Text: DOI EuDML
[1] Böhm, C.: Perfezionamento di un processo iterativo atto alla divisione automatica. La Ricerca Scientifica25, 2077-2080 (1955)
[2] Borodin, A.: On the number of arithmetics required to computer certain functions-Circa May 1973, in: Complexity of sequential and parallel numerical algorithms, edited by J. F. Traub, p. 149-180. New York: Academic Press 1973
[3] Knuth, D. E.: The art of computer programming, vol. II, Seminumerical algorithms. Reading, Mass: Addison-Wesley 1969 · Zbl 0191.18001
[4] Rabinowitz, P.: Multiple-precision division. Comm. ACM4, 98 (1961) · Zbl 0098.10106 · doi:10.1145/366105.366171
[5] Schulz, G.: Iterative Berechnung der reziproken Matrix. Z. Angew. Math. and Mech.13, 57-59 (1933) · JFM 59.0535.04 · doi:10.1002/zamm.19330130111
[6] Sieveking, M.: An algorithm for division of power series. Computing10, 153-156 (1972) · Zbl 0251.68023 · doi:10.1007/BF02242389
[7] Strassen, V.: Vermeidung von Divisionen. J. Reine Angew. Math.264, 184-202 (1973) · Zbl 0294.65021
[8] Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs, N. J.: Prentice-Hall 1964 · Zbl 0121.11204
[9] van der Waerden, B. L.: Modern algebra, vol. 1. New York: Frederick Ungar Publishing Co. 1953
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.