×

zbMATH — the first resource for mathematics

Archimedean lattices. (English) Zbl 0272.06013

MSC:
06D05 Structure and representation theory of distributive lattices
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06B23 Complete lattices, completions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Bigard,Groupes archimédiens et hyper-archimédiens, No. 2 (1967–68).
[2] G. Birkhoff,Lattice theory, Amer. Math. Soc. Coll. Publ.,XXV (1967). · Zbl 0153.02501
[3] G. Birkhoff and O. Frink,Representations of lattices by sets, Trans. Amer. Math. Soc.64 (1948), 299–316. · Zbl 0032.00504 · doi:10.1090/S0002-9947-1948-0027263-2
[4] R. Bleier and P. Conrad,The lattice of closed ideals and a *-extensions of an abelian l-group, preprint. · Zbl 0238.06012
[5] P. M. Cohn,Universal algebra, Harper and Row (1965).
[6] P. Conrad,Lattice oddered groups, Tulane University (1970). · Zbl 0258.06011
[7] P. Conrad,Epi-archimedean lattice ordered groups, preprint. · Zbl 0319.06009
[8] O. Frink,Pseudo-complements in semi-lattices, Duke Math. Jour.29 (1962), 505–514. · Zbl 0114.01602 · doi:10.1215/S0012-7094-62-02951-4
[9] G. Grätzer,Universal algebra, Van Nostrand (1968). · Zbl 0182.34201
[10] G. Grätzer and E. T. Schmidt,Characterizations of congruence lattices of abstract algebras, Acta Sci. Math.24 (1963), 34–59. · Zbl 0117.26101
[11] J. P. Jans,Rings and homology, Holt, Rinehart and Winston (1964).
[12] L. Nachbin,On a characterization of the lattice of all ideals of a Boolean ring, Fund. Math.36 (1949), 137–142. · Zbl 0039.25901
[13] J. Varlet,Contribution à l’étude des treillis pseudo-complementés et des treillis de Stone, Mém. Soc. Roy. Sci. Liège8, (1963), 1–71. · Zbl 0113.01803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.