×

zbMATH — the first resource for mathematics

Missed opportunities. (English) Zbl 0271.01005

MSC:
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
01A65 Development of contemporary mathematics
00A30 Philosophy of mathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Hilbert, Mathematische Probleme, Lecture to the Second Internat. Congress of Math. (Paris, 1900), Arch. Math. und Phys. (3) 1 (1901), 44-63; 213-237; English transl., Bull. Amer. Math. Soc. 8 (1902), 437-479.
[2] H. Minkowski, Raum und Zeit, Lecture to the 80th Assembly of Natural Scientists (Köln, 1908), Phys. Z. 10 (1909), 104-111. English transl., The principle of Relativity, Aberdeen Univ. Press, Aberdeen, 1923.
[3] I. G. Macdonald, Affine root systems and Dedekind’s \?-function, Invent. Math. 15 (1972), 91 – 143. · Zbl 0244.17005 · doi:10.1007/BF01418931 · doi.org
[4] G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge, England; Macmillan Company, New York, 1940. · JFM 67.0002.09
[5] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
[6] L. J. Mordell, On Mr. Ramanujan’s empirical expansions of modular functions, Proc. Cambridge Philos. Soc. 19 (1917), 117-124. · JFM 46.0605.01
[7] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. II, Math. Ann. 114 (1937), no. 1, 316 – 351 (German). · Zbl 0016.35503 · doi:10.1007/BF01594180 · doi.org
[8] Morris Newman, An identity for the coefficients of certain modular forms, J. London Math. Soc. 30 (1955), 488 – 493. · Zbl 0064.28203 · doi:10.1112/jlms/s1-30.4.488 · doi.org
[9] R. C. Gunning, Lectures on modular forms, Notes by Armand Brumer. Annals of Mathematics Studies, No. 48, Princeton University Press, Princeton, N.J., 1962. · Zbl 0178.42901
[10] Lasse Winquist, An elementary proof of \?(11\?+6)\equiv 0(\?\?\?11), J. Combinatorial Theory 6 (1969), 56 – 59. · Zbl 0241.05006
[11] C.G.J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Königsberg, 1829, 66, Eq. (5).
[12] F. Klein and R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen. Vol. 2, Teubner, Leipzig, 1892, p. 373.
[13] J. Clerk Maxwell, A dynamical theory of the electromagnetic field, Philos. Trans. Roy. Soc. (London) 155 (1865), 459-512.
[14] J. Clerk Maxwell, Presidential Address to Section A (Mathematical and Physical Sciences) of the British Association, Liverpool, 1870. Nature 2 (1870), 419-422.
[15] Isaac Newton, Mathematical principles of natural philosophy. Vol. 1: The motion of bodies, Translated into English by Andrew Motte in 1729. The translations revised, and supplied with an historical and explanatory appendix, by Florian Cajori, University of California Press, Berkeley-Los Angeles, Calif., 1962. Isaac Newton, Mathematical principles of natural philosophy. Vol. 2: The system of the world, Translated into English by Andrew Motte in 1729. The translations revised, and supplied with an historical and explanatory appendix, by Florian Cajori, University of California Press, Berkeley - Los Angeles, Calif, 1962. · Zbl 0304.01027
[16] Henry J.S. Smith, Presidential Address to Section A (Mathematical and Physical Sciences) of the British Association, Bradford, 1873. Nature 8 (1873), 448-452.
[17] J. Clerk Maxwell, A treatise on electricity and magnetism, Oxford Univ. Press, Oxford, 1873. · Zbl 1049.01022
[18] Michael Pupin,From immigrant to inventor, 1924.
[19] H. Bacry and J.-M. Lévy-Leblond, Possible kinematics, J. Mathematical Phys. 9 (1968), 1605-1614. MR 38 # 6821. To save time I have slightly misstated their conclusion; each of the groups D, P\(^{\prime}\) and N can occur in two alternative forms, so that the number of possibilities is strictly speaking 11 rather than 8.
[20] Jean-Marc Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. Inst. H. Poincaré Sect. A (N.S.) 3 (1965), 1 – 12 (French, with English summary). · Zbl 0143.22601
[21] L. Carroll, Through the looking-glass, and what Alice found there, Macmillan, London, 1871.
[22] J. Willard Gibbs, On multiple algebra, Vice-Presidential Address to the Section of Mathematics and Astronomy of the American Association for the Advancement of Science, Proc. Amer. Assoc. Adv. Sci. 35 (1886), 37-66.
[23] W. R. Hamilton, On quaternions; or on a new system of imaginaries in algebra, Philos. Mag. 25 (1844), 10-13.
[24] H. Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Otto Wigand, Leipzig, 1844.
[25] Richard Brauer and Hermann Weyl, Spinors in \? Dimensions, Amer. J. Math. 57 (1935), no. 2, 425 – 449. · Zbl 0011.24401 · doi:10.2307/2371218 · doi.org
[26] A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. 49 (1916), 769-822. · JFM 46.1293.01
[27] Rudolf Haag and Daniel Kastler, An algebraic approach to quantum field theory, J. Mathematical Phys. 5 (1964), 848 – 861. · Zbl 0139.46003 · doi:10.1063/1.1704187 · doi.org
[28] Jacques Dixmier, Les \?*-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). · Zbl 0288.46055
[29] R. P. Feynman, Mathematical formulation of the quantum theory of electromagnetic interaction, Physical Rev. (2) 80 (1950), 440 – 457. · Zbl 0040.28002
[30] R. E. Peierls, The commutation laws of relativistic field theory, Proc. Roy. Soc. London. Ser. A. 214 (1952), 143 – 157. · Zbl 0048.44606 · doi:10.1098/rspa.1952.0158 · doi.org
[31] I. M. Gel\(^{\prime}\)fand and A. M. Jaglom, Integration in functional spaces and its applications in quantum physics, J. Mathematical Phys. 1 (1960), 48 – 69. · Zbl 0092.45105 · doi:10.1063/1.1703636 · doi.org
[32] J. von Neumann, Über ein ökonomisches Gleichungssystem und eine Veralgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines mathematischen Seminars, edited by K. Menger, Wien, 1938; English transl., Rev. Economic Studies 13 (1945), 1-9.
[33] E. W. Brown, Resonance in the solar system, Bull. Amer. Math. Soc. 34 (1928), 265-289. · JFM 54.1021.04
[34] C. J. Cohen and E. C. Hubbard, A nonsingular set of orbit elements, Astronom. J. 67 (1962), 10 – 15. · doi:10.1086/108597 · doi.org
[35] Jacques Hadamard, The Psychology of Invention in the Mathematical Field, Princeton University Press, Princeton, N. J., 1945. · Zbl 0063.01843
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.