zbMATH — the first resource for mathematics

High order stiffly stable composite multistep methods for numerical integration of stiff differential equations. (English) Zbl 0265.65040

65L05 Numerical methods for initial value problems
Full Text: DOI
[1] C. W. Gear,The Automatic Integration of Stiff Ordinary Differential Equations, Information Processing, 68, Ed. A. J. H. Morrel, North Holland Publishing Company, Amsterdam, pp. 187–193.
[2] A. Nordsieck,On Numerical Integration of Ordinary Differential Equations, Math. Comp. 16 (1962), 22–49. · Zbl 0105.31902 · doi:10.1090/S0025-5718-1962-0136519-5
[3] R. K. Brayton, F. G. Gustavson, and G. D. Hachtel,A New Efficient Algorithm for Solving Differential-Algebraic Systems Using Implicit Backward Differentiation Formulas, Proc. IEEE, 60 (1972), 98–108. · doi:10.1109/PROC.1972.8562
[4] H. M. Sloate and T. A. Bickart,A-stable Composite Multistep Methods, J. ACM, to appear. · Zbl 0263.65078
[5] T.A. Bickart, D. A. Burgess, and H. M. Sloate,High Order A-stable Composite Multistep Methods for Numerical Integration of Stiff Differential Equations, Proc. Ninth Annual Allerton Conference on Circuit and System Theory, University of Illinois, 1971.
[6] L. F. Shampine and H. A. Watts,Block Implicit One-Step Methods, Math. Comp. 23 (1969), 731–740. · Zbl 0187.40202 · doi:10.1090/S0025-5718-1969-0264854-5
[7] L. F. Shampine and H. A. Watts,A-stable Block Implicit One-Step Methods, BIT 12 (1972), 252–266. · Zbl 0253.65045 · doi:10.1007/BF01932819
[8] F. Odeh and W. Liniger,A Note on Unconditional Fixed-h Stability of Linear Multistep Formulae, Computing, to appear. · Zbl 0256.65038
[9] O. Axelson,A Class of A-stable Methods, BIT 9 (1969), 185–199. · Zbl 0208.41504 · doi:10.1007/BF01946812
[10] P. Henrici,Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962. · Zbl 0112.34901
[11] A. Jameson,Solution of the Equation AX+XB=C by Inversion of an M \(\times\) M or N \(\times\) N Matrix, SIAM J. Appl. Math. 16 (1968), 1020–1023. · Zbl 0169.35202 · doi:10.1137/0116083
[12] F. T. Krogh,On Testing A Subroutine For the Numerical Integration of Ordinary Differential Equations, Technical Memorandum 217, Jet Propulsion Laboratory, Pasadena, California, October 1970.
[13] C. W. Gear,Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. · Zbl 1145.65316
[14] O. B. Widlund,A Note on Unconditionally Stable Linear Multistep Methods, BIT 7 (1967) 65–70. · Zbl 0178.18502 · doi:10.1007/BF01934126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.