×

zbMATH — the first resource for mathematics

A-stable Runge-Kutta processes. (German) Zbl 0265.65035

MSC:
65L05 Numerical methods for initial value problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] O. Axelsson,A Class of A-stable Methods, BIT 9 (1969), 185–199. · Zbl 0208.41504 · doi:10.1007/BF01946812
[2] J. C. Butcher,Implicit Runge-Kutta Integration Processes, Math. Comp. 18 (1964). 50–64. · Zbl 0123.11701 · doi:10.1090/S0025-5718-1964-0159424-9
[3] J. C. Butcher,Integration Processes Based on Radau Quadrature Formulas, Math. Comp. 18 (1964), 233–244. · Zbl 0123.11702 · doi:10.1090/S0025-5718-1964-0165693-1
[4] F. H. Chipman,Numerical Solution of Initial Value Problems using A-stable Runge-Kutta Processes, Research Report CSRR 2042, Dept. of AACS, University of Waterloo.
[5] G. Dahlquist,A Special Stability Problem for Linear Multistep Methods, BIT 3 (1963), 27–43. · Zbl 0123.11703 · doi:10.1007/BF01963532
[6] B. L. Ehle,On Padé Approximation to the Exponential Function and A-stable Methods for the Numerical Solution of Initial Value Problems, Research Report CSRR 2010, Dept. AACS, University of Waterloo.
[7] K. Wright,Some Relationships Between Implicit Runge-Kutta, Collocation and Lanczos \(\tau\) Methods, and their Stability Properties, BIT 10 (1970), 217–227. · Zbl 0208.41602 · doi:10.1007/BF01936868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.