×

zbMATH — the first resource for mathematics

Acyclic colorings of planar graphs. (English) Zbl 0265.05103

MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory
05C15 Coloring of graphs and hypergraphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Bosák,Hamiltonian lines in cubic graphs, Proc. Int. Symp. Theory of Graphs (Rome 1966), P. Rosenstiehl (ed.), Gordon and Breach, New York; Dunod, Paris, 1967, pp. 35–46.
[2] G. Chartrand, D. P. Geller and S. Hedetniemi,Graphs with forbidden subgraphs, J. Combinatorial Theory10 (1971), 12–41. · Zbl 0223.05101
[3] G. Chartrand and H. V. Kronk,The point-arboricity of planar graphs, J. London Math. Soc.44 (1969), 612–616. · Zbl 0175.50505
[4] G. Chartrand, H. V. Kronk and C. E. Wall,The point-arboricity of a graph, Israel J. Math.6 (1968), 169–175. · Zbl 0164.54201
[5] P. Erdös,Graph theory and probability, Canad. J. Math.11 (1959), 34–38. · Zbl 0084.39602
[6] P. Franklin,The four color problem, Amer. J. Math.44 (1922), 225–236. · JFM 48.0664.02
[7] H. Grötzsch,Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math. Natur. Reihe.8 (1958/59), 109–120.
[8] B. Grünbaum,Grötzsch’s theorem on 3-colorings, Michigan Math. J.10 (1963), 303–310. · Zbl 0115.40903
[9] B. Grünbaum,Convex Polytopes, Interscience, New York, 1967.
[10] B. Grünbaum,A problem in graph coloring, Amer. Math. Monthly77 (1970), 1088–1092.
[11] B. Grünbaum and H. Walther,Shortness exponents of families of graphs, J. Combinatorial Theory (to appear.) · Zbl 0263.05103
[12] S. Hedetniemi,On partitioning planar graphs, Canad. Math. Bull.11 (1968), 203–211. · Zbl 0167.21805
[13] A. Kotzig,Prispevok k teórii Eulerovských polyédrov, (Slovak. Russian summary) Mat. Časopis Sloven. Akad. Vied.5 (1955), 101–113.
[14] H. V. Kronk,An analogue to the Heawood map-coloring problem, J. London Math. Soc. (2)1 (1969), 750–752. · Zbl 0184.27603
[15] H. V. Kronk and A. T. White,A 4-color theorem for toroidal graphs, Proc. Amer Math. Soc.34 (1972), 83–86. · Zbl 0219.05057
[16] H. Lebesgue,Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. (9)19 (1940), 27–43. · Zbl 0024.28701
[17] J. Lederberg,Hamilton circuits of convex trivalent polyhedra (up to 18 vertices), Am er Math. Monthly74 (1967), 522–527. · Zbl 0147.42702
[18] D. R. Lick,A class of point partition numbers, Recent Trends in Graph Theory, M. Capobianco et al. (eds.), Springer-Verlag, New York 1971, pp. 185–190.
[19] D. R. Lick and A. T. White,The point partition numbers of closed 2-manifolds, J London Math. Soc. (2)4 (1972), 577–583. · Zbl 0233.05101
[20] T. S. Motzkin,Colorings, cocolorings, and determinant terms, Proc. Int. Symp. Theory of Graphs (Rome 1966), P. Rosenstiehl (ed.), Gordon and Breach, New York; Dunod, Paris, 1967, pp. 253–254.
[21] O. Ore,The Four-Color Problem, Academic Press, New York 1967. · Zbl 0149.21101
[22] H. Sachs,Einführung in die Theorie der endlichen Graphen. Teil II, Teubner, Leipzig, 1972. · Zbl 0239.05105
[23] S. K. Stein,B-sets and coloring problems, Bull. Amer. Math. Soc.76 (1970), 805–806. · Zbl 0194.56004
[24] P. Wernicke,Über den kartographischen Vierfarbensatz, Math. Ann.58 (1904), 413–426. · JFM 35.0511.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.