zbMATH — the first resource for mathematics

The initial value problem for the Navier-Stokes equations with data in L\(^p\). (English) Zbl 0254.35097

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Calderon, A. P., & A. Zygmund, On the existence of certain singular integrals. Acta Math. 88, 85-139 (1952). · Zbl 0047.10201
[2] Hopf, Eberhard, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachrichten 4 (1951). · Zbl 0042.10604
[3] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach 1969. · Zbl 0184.52603
[4] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193-248 (1934). · JFM 60.0726.05
[5] Lewis, J. E., Mixed estimates for singular integrals, Proceedings of Symposia in Pure Mathematics. A.M.S., Vol. X. · Zbl 0177.38604
[6] Lions, J. L., Quelques méthodes de resolution des problèmes aux limites non linéaires. Paris: Dunod, Gauthier-Villars 1969.
[7] Oseen, C. W., Neuere Methoden und Ergebnisse in der Hydrodynamik, p. 68. Leipzig: Akademische Verlagsgesellschaft m.b.h. 1927. · JFM 53.0773.02
[8] Prodi, G., Un teorema di unicitá per le equazioni di Navier-Stokes. Annali di Mat. 48, 173-182 (1959). · Zbl 0148.08202
[9] Riviere, N. M., Singular integrals and multiplier operators, Arkiv för Math. (to appear). · Zbl 0244.42024
[10] Serrin, J., The Initial Value Problem for the Navier-Stokes Equations. Nonlinear Problems, edited by R. E. Langer, University of Wisconsin press, 1963, 69-83. · Zbl 0115.08502
[11] Stein, E. M., Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press 1970. · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.