×

zbMATH — the first resource for mathematics

A-stable block implicit one-step methods. (English) Zbl 0253.65045

MSC:
65L05 Numerical methods for initial value problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] O. Axelsson,Global integration of differential equations through Lobatto quadrature, BIT 4 (1964), 69–86. · Zbl 0122.12204 · doi:10.1007/BF01939850
[2] O. Axelsson,A class of A-stable methods, BIT 9 (1969), 185–199. · Zbl 0208.41504 · doi:10.1007/BF01946812
[3] G. Birkhoff and R. S. Varga,Discretization errors for well-set Cauchy problems I, J. of Math. and Physics 45 (1965), 1–23. · Zbl 0134.13406 · doi:10.1002/sapm19654411
[4] J. C. Butcher,Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50–64. · Zbl 0123.11701 · doi:10.1090/S0025-5718-1964-0159424-9
[5] J. C. Butcher,Integration processes based on Radau quadrature formulas, Math. Comp. 18 (1964), 233–244. · Zbl 0123.11702 · doi:10.1090/S0025-5718-1964-0165693-1
[6] J. Céa,Equations differentielles methode d’approximation discrete p-implicite, Chiffres 8, No. 3 (1965), 179–194. · Zbl 0253.65044
[7] F. Ceschino and J. Kuntzmann,Numerical Solution of Initial Value Problems, Prentice-Hall, Englewood Cliffs, New York, 1966. · Zbl 0154.17003
[8] L. Collatz,The Numerical Treatment of Differential Equations, Springer-Verlag, New York, 1966.
[9] W. Coppel,Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[10] G. Dahlquist,A special stability problem for linear multistep methods, BIT 3 (1963), 27–43. · Zbl 0123.11703 · doi:10.1007/BF01963532
[11] B. L. Ehle,High order A-stable methods for the numerical solution of systems of D.E.s, BIT 8 (1968), 276–278. · Zbl 0176.14604 · doi:10.1007/BF01933437
[12] C. W. Gear,The automatic integration of stiff ordinary differential equations, IFIP Congress, Edinburgh, 1968, 187–193.
[13] W. E. Milne,Numerical Solution of Differential Equations, Wiley, New York, 1953. · Zbl 0050.12202
[14] J. Riordan,Combinatorial Identities, Wiley, New York, 1968. · Zbl 0194.00502
[15] J. B. Rosser,A Runge-Kutta for all seasons, SIAM Rev. 9 (1967), 417–452. · Zbl 0243.65041 · doi:10.1137/1009069
[16] L. F. Shampine and H. A. Watts,Block implicit one-step methods, Math. Comp., 23 (1969), 731–740. · Zbl 0187.40202 · doi:10.1090/S0025-5718-1969-0264854-5
[17] H. A. Watts,A-stable block implicit one-step methods, Ph. D. dissertation, University of New Mexico 1971, also available as Sandia Laboratories report SC-RR-71 0296.
[18] K. Wright,Some relationships between implicit Runge-Kutta, Collocation and Lanczos \(\tau\) methods, and their stability properties, BIT 10 (1970), 217–227. · Zbl 0208.41602 · doi:10.1007/BF01936868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.