×

zbMATH — the first resource for mathematics

A finite element approach to optimal design of plastic structures in plane stress. (English) Zbl 0251.73059

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Continua and Discontinua, Proceedings of a Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio, 1967, pp. 11-189.
[2] and , The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967.
[3] Maier, Int. J. Solids Struct. 7 pp 345– (1971)
[4] Wasintynski, Appl. Mech. Rev. 16 pp 341– (1963)
[5] Sheu, Appl. Mech. Rev. 10 pp 985– (1968)
[6] Drucker, Q. appl. Math. 15 pp 269– (1957)
[7] Shield, ZAMP 12 pp 414– (1961)
[8] Zavelani-Rossi, Meccanica 4 pp 364– (1969)
[9] Toakley, J. struct. Div. Proc. Am. Soc. Civ. Engrs 94 pp 1219– (1968)
[10] Chan, Int. J. Solids Struct. 4 pp 885– (1968)
[11] Argyris, Aeronaut. J. 73 pp 218– (1969)
[12] Drucker, J. Méchanique 3 pp 235– (1964)
[13] Drucker, Q. appl. Math. 9 pp 381– (1952)
[14] Linear Programming McGraw-Hill, New York, 1964.
[15] and , Nonlinear Programming, Blaisdell, Waltham, 1966.
[16] Programmazione Matematica. UTET, Torino, 1969.
[17] Sacchi, Rc. Ist. lomb. Sci. Lett. A103 (1970)
[18] and , Design for Minimum Weight, Proceedings of the 9th International Congress on Applied Mechanics, Brussels, 1956.
[19] ’Optimum design methods for structures’, in Plasticity, Pergamon Press, Oxford, 1960, pp. 580-591. · doi:10.1016/B978-0-08-009459-5.50034-X
[20] Maier, Meccanica 4 pp 36– (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.