zbMATH — the first resource for mathematics

\(r\)-convex functions. (English) Zbl 0249.90063

90C25 Convex programming
52A05 Convex sets without dimension restrictions (aspects of convex geometry)
Full Text: DOI
[1] K.J. Arrow and A.C. Enthoven, ”Quasi-concave programming,”Econometrica 29 (1961) 779–800. · Zbl 0104.14302 · doi:10.2307/1911819
[2] R.G. Bartle,The elements of real analysis (John Wiley & Sons, 1964). · Zbl 0116.32302
[3] W. Fenchel, ”Convex cones, sets and functions,”Lecture notes (Princeton University, 1953). · Zbl 0053.12203
[4] G.H. Hardy, J.E. Littlewood and G. Polya,Inequalities (Cambridge University Press, 1967).
[5] A. Klinger and O.L. Mangasarian, ”Logarithmic convexity and geometric programming,”Journal of Mathematical Analysis and Applications 24 (1968) 388–408. · Zbl 0301.90034 · doi:10.1016/0022-247X(68)90039-5
[6] O.L. Mangasarian, ”Pseudo-convex functions,”SIAM Journal on Control, Ser. A, 3 (1965) 281–290. · Zbl 0138.15702
[7] B. Martos, ”Nem-lineáris programmozási Módszerek Hatóköre,” (the power of nonlinear programming methods) MTA Közgazdaságtudományi Int\.ezet\.enek Közlem\.enyei No. 20 (Budapest, 1966) (in Hungarian).
[8] J. Ponstein, ”Seven kinds of convexity,”SIAM Review 9 (1967) 115–119. · Zbl 0164.06501 · doi:10.1137/1009007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.