×

zbMATH — the first resource for mathematics

Nonlinear evolution equations in Banach spaces. (English) Zbl 0249.34049

MSC:
34G99 Differential equations in abstract spaces
35K99 Parabolic equations and parabolic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Benilan and H. Brezis,Solutions faibles d’équations d’évolution dans les espaces de Hilbert, to appear.
[2] H. Brezis,On a problem of T. Kato, Comm. Pure Appl. Math.,24 (1971), 1–6. · Zbl 0208.39102 · doi:10.1002/cpa.3160240102
[3] H. Brezis,Semi-groupes non linéaires et applications, Symposium sur les problèmes d’évolution, Istituto Nazionale di Alta Mathematica, Rome, May 1970.
[4] H. Brezis, M. G. Crandall and A. Pazy,Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math.23 (1970), 123–144. · Zbl 0182.47501 · doi:10.1002/cpa.3160230107
[5] H. Brezis and A. Pazy,Convergence and approximation of semigroups of nonlinear operators in Banach space, J. Functional Analysis, to appear.
[6] F. E. Browder,Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc.73 (1967), 867–874. · Zbl 0176.45301 · doi:10.1090/S0002-9904-1967-11820-2
[7] F. E. Browder,Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. in Pure Math18, Part II, Amer. Math. Soc., to appear. · Zbl 0176.45301
[8] M. G. Crandall,Differential equations on convex sets, J. Math. Soc. Japan22 (1970), 443–455. · Zbl 0224.34006 · doi:10.2969/jmsj/02240443
[9] M. G. Crandall,A generalized domain for semigroup generators, MRC Technical Summary Report # 1189. · Zbl 0285.47044
[10] M. G. Crandall and T. M. Liggett,Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math.,93 (1971), 265–298. · Zbl 0226.47038 · doi:10.2307/2373376
[11] M. G. Crandall and A. Pazy,Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis3 (1969), 376–418. · Zbl 0182.18903 · doi:10.1016/0022-1236(69)90032-9
[12] J. A. Goldstein,Approximation of nonlinear semigroups and evolution equations, to appear. · Zbl 0231.47037
[13] E. Hille and R. S. Phillips,Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Publ. Vol. 31, Providence, R.I. 1957. · Zbl 0078.10004
[14] T. Kato,Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan19 (1967), 508–520. · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[15] T. Kato,Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. in Pure Math.18, Part I, Amer. Math. Soc., Providence, Rhode Island, 138–161.
[16] R. H. Martin, Jr.,Differential Equations on Closed Subsets of a Banach Space, to appear.
[17] R. H. Martin, Jr.,Generating an evolution system in a class of uniformly convex Banach spaces, to appear.
[18] I. Miyadera,Some remarks on semigroups of nonlinear operators, Tôhoku Math. J.23 (1971), 245–258. · Zbl 0219.47060 · doi:10.2748/tmj/1178242643
[19] S. Ôharu,On the generation of semigroups of nonlinear contractions, J. Math. Soc. Japan22 (1970), 526–550. · Zbl 0198.18601 · doi:10.2969/jmsj/02240526
[20] A. Pazy,Semigroups of nonlinear operators in Hilbert space, Problems in Non-Linear Analysis, C.I.M.E. session 4 1970, Edizioni Cremonese Rome, pp. 343–430.
[21] G. F. Webb,Nonlinear evolution equations and product stable operators in Banach spaces, Trans. Amer. Math. Soc.155 (1971), 409–426. · Zbl 0213.41104 · doi:10.1090/S0002-9947-1971-0276842-9
[22] K. Yosida,Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen,123, Academic Press, New York, 1965.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.