×

zbMATH — the first resource for mathematics

Realization is universal. (English) Zbl 0248.18015

MSC:
18B20 Categories of machines, automata
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. A. Arbib,Theories of Abstract Automata, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. · Zbl 0193.32801
[2] M. A. Arbib andH. P. Zeiger, On the relevance of abstract algebra to control theory,Automatica 5 (1969), 589–606. · Zbl 0199.49303
[3] Y. Give’on andY. Zalcstein, Algebraic structures in linear systems theory,J. Computer and System Sciences 4 (1970), 539–556. · Zbl 0207.01903
[4] J. A. Goguen, ”Mathematical Representation of Hierarchically Organized Systems”, inGlobal Systems Dynamics (E. Attinger, editor), S. Karger, Basel, 1970.
[5] J. A. Goguen, ”Systems and Minimal Realization”, inProc. 1971 IEEE Conference on Decision and Control, Miami, Florida, 1972.
[6] J. A. Goguen, Minimal realization of machines in closed categories, to appear inBull. Amer. Math. Soc. · Zbl 0277.18003
[7] R. E. Kalman, ”Introduction to the Algebraic Theory of Linear Dynamical Systems”,Lecture Notes in Operations Research and Mathematical Economics, Vol. 11, Springer Verlag, Berlin, 1969. · Zbl 0183.37103
[8] S. MacLane,Categories for the Working Mathematician, Springer Verlag, Berlin, 1972. · Zbl 0705.18001
[9] S. MacLane andG. Birkhoff,Algebra, MacMillan, New York, 1967.
[10] M. B. Mesarović, ”Foundations for a General Systems Theory”, inViews on General Systems, Proceedings of the Second Systems Symposium at Case Institute of Technology, J. Wiley, New York, 1964. · Zbl 0201.46901
[11] B. Mitchell,Theory of Categories, Academic Press, New York, 1965. · Zbl 0136.00604
[12] A. Nerode, Linear automaton transformations,Proc. Amer. Mach. Soc. 9 (1958), 541–544. · Zbl 0089.33403
[13] Y. Rouchaleau, Finite-dimensional, constant, discrete-time, linear dynamical systems over some classes of commutative rings, Ph.D. Dissertation, Operations Research Dept., Stanford University, 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.