×

zbMATH — the first resource for mathematics

The theory of well-quasi-ordering: a frequently discovered concept. (English) Zbl 0244.06002

MSC:
06A06 Partial orders, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ceder, J.G, Some generalizations of metric spaces, Pacific J. math., 11, 105-125, (1961) · Zbl 0103.39101
[2] Erdös, P, Advanced problem 4358, Amer. math. monthly, 56, 480, (1949)
[3] Erdös, P; Rado, R, A theorem on partial well-ordering of sets of vectors, J. London math. soc., 34, 222-224, (1959) · Zbl 0085.03802
[4] Erdös, P; Rado, R, Sets having divisor property, solution to problem 4358, Amer. math. monthly, 59, 255-257, (1952)
[5] Fraïssé, R, Théorie des relations.—sur la comparaison des types d’ordres, C. R. acad. sci. Paris, Sér. A, 226, 1330-1331, (1948) · Zbl 0034.17604
[6] Haines, L.H, On free monoids partially ordered by embedding, J. combinatorial theory, 6, 94-98, (1969) · Zbl 0224.20065
[7] Higman, G, Ordering by divisibility in abstract algebras, (), 326-336, (3) · Zbl 0047.03402
[8] {\scT. A. Jenkyns and C. St. J. A. Nash-Williams}, Counter examples in the theory of well-quasi-ordered sets (mimeographed).
[9] Jullien, P, Théorie des relations.—sur la comparaison des types d’ordres dispersés, C. R. acad. sci. Paris, Sér. A, 264, 594-595, (1967) · Zbl 0153.32201
[10] Jullien, P, Analyse combinatoire.—sur un théorème d’extension dans la théorie des mots, C. R. acad. sci. Paris, Sér. A, 266, 851-854, (1968) · Zbl 0157.03104
[11] Kruskal, J.B, The theory of well-partially-ordered sets, () · Zbl 0158.27002
[12] Kruskal, J.B, Well-partial-ordering and Vazsonyi’s conjecture, () · Zbl 0158.27002
[13] Kruskal, J.B, Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture, Trans. amer. math. soc., 95, 210-225, (May 1960)
[14] Kurepa, G, Théorie des ensembles, C. R. acad. sci. Paris, 205, 1196, (1937) · JFM 63.0834.02
[15] Kurepa, G, L’hypothèse du continu et le problème de souslin, Acad. serbe sci. publ. inst. math., 2, 26-36, (1948) · Zbl 0034.17701
[16] Laver, R, ()
[17] Laver, R, On Fraïssé order type conjecture, Ann. math., 93, 89-111, (1971) · Zbl 0208.28905
[18] Laver, R, (), Abstract 68T B30
[19] Michael, E, A class of partially ordered sets, Amer. math. monthly, 67, 448-449, (1960) · Zbl 0089.27003
[20] Milner, E.C, Well-quasi-ordering of sequences of ordinal numbers, J. London math. soc., 43, 291-296, (1968) · Zbl 0155.02501
[21] Nash-Williams, C.St.J.A, On well-quasi-ordering finite trees, (), 833-835 · Zbl 0122.25001
[22] Nash-Williams, C.St.J.A, On well-quasi-ordering trees, (), 83-84 · Zbl 0122.25001
[23] Nash-Williams, C.St.J.A, On well-quasi-ordering lower sets of finite trees, Proc. Cambridge philos. soc., 60, 369-384, (1964) · Zbl 0123.01203
[24] Nash-Williams, C.St.J.A, On well-quasi-ordering infinite trees, (), 697-720 · Zbl 0144.23305
[25] Nash-Williams, C.St.J.A, On well-quasi-ordering transfinite sequences, (), 33-39 · Zbl 0129.00602
[26] Nash-Williams, C.St.J.A, On well-quasi-ordering trees, (), 79-82 · Zbl 0122.25001
[27] Nash-Williams, C.St.J.A, On better-quasi-ordering transfinite sequences, (), 273-290 · Zbl 0155.02404
[28] Neumann, B.H, On ordered division rings, Trans. amer. math. soc., 66, 202-346, (1949) · Zbl 0035.30401
[29] Rado, R, Partial well-ordering of sets of vectors, Mathematika, 1, 89-95, (1954) · Zbl 0057.04302
[30] Tarkowski, S, On the comparability of dendrites, Bull. acad. polon. sci. Sér. sci. math. astronom. phys., 8, 39-41, (1960) · Zbl 0090.03304
[31] Wolk, E.S, Partially well ordered sets and partial ordinals, Fund. math., 60, 175-186, (1967) · Zbl 0153.02601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.