×

zbMATH — the first resource for mathematics

General Lagrange and Hermite interpolation in \(R^n\) with applications to finite element methods. (English) Zbl 0243.41004

MSC:
41A05 Interpolation in approximation theory
41A63 Multidimensional problems
65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aubin, J.P., Behavior of the approximate solution of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 559–639 (1967).
[2] Aubin, J.P., Approximation des espaces de distributions et des opérateurs différentiels. Bull. Soc. Math. France (1967), Mémoire No 12.
[3] Babuška, Ivo, The finite element method for elliptic differential equations (Symp. on the Numerical Solution of Partial Differential Equations, Univ. of Maryland, 1970). Numerical Solution of Partial Differential Equations-II (B. Hubbard, ed.), p. 69–106. New York: Academic Press 1971.
[4] Babuška, Ivo, Error bounds for finite element method. Numer. Math. 16, 322–333 (1971). · Zbl 0214.42001
[5] Bell, K., A refined triangular plate bending finite element. Int. J. Numer. Math. Engineering 1, 101–121 (1969).
[6] Birkhoff, G., M. Schultz, & R.S. Varga, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968). · Zbl 0159.20904
[7] Bramble, James H., Variational Methods for the Numerical Solution of Elliptic Problems (Lecture notes). Chalmers Institute of Technology and the University of Göteborg, Sweden, 1970.
[8] Bramble, J.H., & S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 112–124 (1970). · Zbl 0201.07803
[9] Bramble, J.H., & S.R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 16, 362–369 (1971). · Zbl 0214.41405
[10] Bramble, James H., & Miloš Zlámal, Triangular elements in the finite element method. Math. Comp. 24, 809–820 (1970).
[11] Cartan, Henri, Calcul Differentiel. Paris: Hermann 1967.
[12] Ciarlet, P.G., Some results in the theory of nonnegative matrices. Linear Algebra and Appl. 1, 139–152 (1968). · Zbl 0167.03101
[13] Ciarlet, P.G., & C. Wagschal, Multipoint Taylor formulas and applications to the finite element method. Numer. Math. 17, 84–100 (1971). · Zbl 0199.50104
[14] Coatmélec, Christian, Approximation et interpolation des fonctions différentiables de plusieurs variables. Ann. Sci. Ecole Norm. Sup. (3) 83, 271–341 (1966). · Zbl 0155.10902
[15] Dieudonnè, J., Foundations of Modern Analysis. New York: Academic Press Inc. 1960. · Zbl 0100.04201
[16] Fix, G., & G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory. Studies in Appl. Math. 48, 265–273 (1969). · Zbl 0179.22501
[17] Frederickson, Paul O., Triangular spline interpolation. Math. Report No. 6, Lakehead Univ. 1970.
[18] Guenther, R.B., & E. L. Roetman, Some observations on interpolation in higher dimensions. Math. Comp. 24, 517–522 (1970). · Zbl 0234.65010
[19] Guglielmo, F. di, Méthode des éléments finis: Une famille d’approximation des espaces de Sobolev par les translatées de p fonctions. Calcolo 7, 185–234 (1970). · Zbl 0216.15801
[20] Hall, C.A., Bicubic interpolation over triangles. J. Math. Mech. 19, 1–11 (1969). · Zbl 0194.47102
[21] Nečas, Jindřich, Les Méthodes Directes en Théorie des Equations Elliptiques. Paris: Masson 1967.
[22] Nicolaides, R.A., On Lagrange interpolation in n variables. Institute of Computer Sciences (London), Tech. Note ICSI 274, 1970.
[23] Nicolaides, R.A., On a class of finite elements generated by Lagrange interpolation II. Institute of Computer Science (London), Techn. Note ICSI 329, 1971. · Zbl 0282.65009
[24] Nicolaides, R.A., On a class of finite elements generated by Lagrange interpolation. To appear. · Zbl 0282.65009
[25] Nitsche, J., Interpolation in Sobolevschen Funktionenräumen. Numer. Math. 13, 334–343 (1969). · Zbl 0221.65012
[26] Nitsche, J., Lineare Spline-Funktionen und die Methode von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal. 36, 348–355 (1970). · Zbl 0192.44503
[27] Salzer, Herbert E., Formulas for bivariate hyperosculatory interpolation. Math. Comp. 25, 119–133 (1971). · Zbl 0252.65003
[28] Schultz, M. H., L2-multivariate approximation theory. SIAM J. Numer. Anal. 6, 184–209 (1969). · Zbl 0202.15902
[29] Strang, Gilbert, The finite element method and approximation theory (Symp. on the Numerical Solution of Partial Differential Equations, Univ. of Maryland, 1970). Numerical Solution of Partial Differential Equations-II (B. Hubbard, ed.), p. 547–583. New York: Academic Press 1971.
[30] Strang, Gilbert, & George Fix, Chapter III of: An Analysis of the Finite Element Method. To appear. · Zbl 0272.65099
[31] Taylor, Angus E., Introduction to Functional Analysis. New-York: John Wiley 1958. · Zbl 0081.10202
[32] Thacher, Jr., Henry C., Derivation of interpolation formulas in several independent variables. Ann. New York Acad. Sci. 86, 758–775 (1960). · Zbl 0156.17302
[33] Thacher, Jr., Henry C., & W.E. Milne, Interpolation in several variables. J. Soc. Indust. Appl. Math. 8, 33–42 (1960). · Zbl 0094.31303
[34] Ženíšek, Alexander, Interpolation polynomials on the triangle. Numer. Math. 15, 283–296 (1970). · Zbl 0216.38901
[35] Zlámal, Miloš, On the finite element method. Numer. Math. 12, 394–409 (1968). · Zbl 0176.16001
[36] Zlámal, Miloš, A finite element procedure of the second order of accuracy. Numer. Math. 14, 394–402 (1970). · Zbl 0209.18002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.