×

zbMATH — the first resource for mathematics

Quadratic inequalities and coefficient estimates for schlicht functions. (English) Zbl 0242.30013

MSC:
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30C55 General theory of univalent and multivalent functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergman, S., & M. Schiffer, Kernel functions and conformal mapping. Compositio Math. 8, 205-249 (1951). · Zbl 0043.08403
[2] Dieudonné, J., Sur les fonctions univalentes. C. R. Acad. Sci., Paris, 192, 1148-1150 (1931). · Zbl 0001.34401
[3] FitzGerald, C., Analytic Continuation of a Function Defined on a Sequence of Points. Bull. London Math. Soc., 3, 286-290 (1971). · Zbl 0227.30009 · doi:10.1112/blms/3.3.286
[4] Goluzin, G. M., On distortion theorems and the coefficients of univalent functions. Mat. Sb. 23, 65, 353-360 (1948).
[5] Goluzin, G. M., On the theory of univalent functions. Mat. Sb. 29, 71, 197-208, (1959).
[6] Goluzin, G. M., Geometric Theory of Functions of a Complex Variable. Vol. 26, Trans, of Math. Mono. Am. Math. Soc. 1969. · Zbl 0183.07502
[7] Grunsky, H., Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Z. 45, 29-61 (1939). · JFM 65.0339.04 · doi:10.1007/BF01580272
[8] Hayman, W. K., The asymptotic behavior of p-valent functions. Proc. London Math. Soc. 3, 5, 257-284 (1955). · Zbl 0067.30104 · doi:10.1112/plms/s3-5.3.257
[9] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89, 103-121 (1923). · JFM 49.0714.01 · doi:10.1007/BF01448091
[10] Milin, I. M., A bound for the coefficients of schlicht functions. Dokl. Akad. Nauk. SSSR 160, 769-771 (1965).
[11] Rogosinski, W., Über positive harmonische Entwicklungen und typisch reelle Potenzreihen. Math. Z. 35, 93-121 (1932). · Zbl 0003.39303 · doi:10.1007/BF01186552
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.