×

zbMATH — the first resource for mathematics

On quasifree states of the canonical commutation relations. I. (English) Zbl 0239.46066

MSC:
46L05 General theory of \(C^*\)-algebras
46N99 Miscellaneous applications of functional analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Araki, H., A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, /. Math. Phys. 4 (1963), 1343-1362. · Zbl 0132.43805 · doi:10.1063/1.1703912
[2] - , On the diagonalization of a bilinear Hamiltonian by a Bogoliubov transformation, Publ. RIMS Kyoto Univ. 4 (1968), 387-412. · Zbl 0202.42101 · doi:10.2977/prims/1195194882
[3] - 5 On quasifree state of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6 (1970), 385-442.
[4] Araki, H., and E.J. Woods (to be published).
[5] Araki, H., On quasifree states of the canonical commutation relations (II), this issue. · Zbl 0239.46067 · doi:10.2977/prims/1195193786
[6] Dell’ Antonio, G. F., Structure of the algebras of some free systems, Comm. Math. Phys. 9 (1968), 81-117. · Zbl 0159.29002 · doi:10.1007/BF01645837
[7] Manuceau, J., Etude de quelques automorphismes de la C*-algebre du champ de bosons libres, Ann. Inst. Henri Poincare, 8 (1968), 117-138. · Zbl 0173.29901 · numdam:AIHPA_1968__8_2_117_0 · eudml:75583
[8] - , C*-algebre de relations de commutation, ibid. 139-161.
[9] Manuceau, J., and A. Verbeure, Quasi-free states of the C.C.R algebra and Bogoliubov transformations, Comm. Math. Phys. 9 (1968), 293-302. · Zbl 0167.55902 · doi:10.1007/BF01654283
[10] Manuceau, J., F. Rocca and D. Testard, On the product form of quasifree states, Comm. Math. Phys. 12 (1969), 43-57. · Zbl 0172.27303 · doi:10.1007/BF01646434
[11] Powers, R.T. and E. St0rmer, Free states of the canonical auticommutation relations, Comm. Math. Phys. 18 (1970), 1-33.
[12] Robinson, D.W., The ground state of the Bose gas, Comm. Math. Phys. 1 (1965), 159-171.
[13] Rocca, F., M. Sirugue and D. Testard, On a class of equilibrium states under the Kubo-Martin-Schwinger condition, II, Bosons, Comm. Math. Phys. 19 (1970), 119-141.
[14] Nelson, E., Analytic vectors, Annals of Math. 70 (1959), 572-615. · Zbl 0091.10704 · doi:10.2307/1970331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.