×

zbMATH — the first resource for mathematics

Interpolation of normed Abelian groups. (English) Zbl 0237.46039

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
22-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to topological groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aoki, T., Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo, 18, 588-594 (1942) · Zbl 0060.26503
[2] Aronszajn, N.; Gagliardo, E., Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl., 68, 51-118 (1965) · Zbl 0195.13102
[3] Bourbaki, N., Topologie générale. Chapitre 9:Utilisation des nombres réels en topologie générale (1958), Paris: Hermann, Paris · Zbl 0085.37103
[4] Butzer, P. L.; Berens, H., Semi-groups of operators and approximation (1967), Berlin: Springer, Berlin · Zbl 0164.43702
[5] Cheney, E. W.; Price, K., Minimal projections. Approximation theory, Proceedings of a Symposium held at Lancaster, July 1969 (1970), London: Academic Press, London · Zbl 0217.16201
[6] Gohberg, J. C.; Krein, M. G., Introduction to the theory of nonselfadjoint operators (1965), Moscow: Izd. Nauka, Moscow
[7] A. A. Gončar,The accuracy of approximation with rational functions and properties of functions, Proceedings of International Congress of Mathematicians (Moscow, 1966), Izd. «Mir», Moscow, 1968 (Russian).
[8] Holmstedt, T., Interpolation of quasi-normed spaces, Math. Scand., 26, 177-199 (1970) · Zbl 0193.08801
[9] Krée, P., Interpolation d’espaces qui ne sont ni normés, ni complets. Applications, Ann. Inst. Fourier, 17, 137-174 (1968) · Zbl 0173.15801
[10] Köthe, G., Topologische lineare Räume, I (1960), Berlin: Springer, Berlin · Zbl 0093.11901
[11] Lorentz, C. G., Approximation of functions (1966), New York: Holt, New York
[12] B. S. Mitiagin - A. Pełczynski,Nuclear operators and approximate dimension, Proceedings of International Congress of Mathematicians (Moscow, 1966), Izd. «Mir», Moscow, 1968.
[13] Mostert, P. S.; Shields, A. L., On the structure of semigroups on a compact manifold with boundary, Ann. Math., 65, 117-143 (1957) · Zbl 0096.01203
[14] J. Musielak - J. Peetre,F-modular spaces. To appear. · Zbl 0319.46020
[15] J. von Neumann,Continuous geometry, Princeton, 1960. · Zbl 0171.28003
[16] Oloff, R., p-Normideale von Operatoren in Banachräumen, Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen, 18, 259-262 (1969) · Zbl 0204.45102
[17] Oloff, R., Interpolation zwischen den Klassen S_p von Operatoren in Hilberträumen, Math. Nachr., 46, 209-218 (1970) · Zbl 0181.13503
[18] J. Peetre,A theory of interpolation of normed spaces, Notes, Brasilía, 1963 (≈ Notas de matematica no. 39, 1968).
[19] Peetre, J., On interpolation functions, III, Acta Sci. Math., 30, 235-239 (1969) · Zbl 0188.43603
[20] J. Peetre,On the connection between the theory of interpolation spaces and approximation theory, Proc. of the Conf. on Constructive Theory of Functions, Akadèmiai Kiadò Budapest, 1971, pp. 351-362
[21] Peetre, J., A new approach in interpolation spaces, Studia Math., 34, 23-42 (1970) · Zbl 0188.43602
[22] J. Peetre,Approximation of linear operators, Procedings of the International Conference on Constructive Function Theory, Varna, May 19-25, 1970, Publishing House of the Bulgarian Accademy of Sciences, Sofia, 1972, pp. 245-263.
[23] Peetre, J., Zur Interpolation von Operatorenräumen, Arch. Mat., 21, 601-608 (1970) · Zbl 0231.46038
[24] J. Peetre,Banach couples. Technical report, Lund 1971. · Zbl 0224.46040
[25] J. Peetre,Analysis in quasi-Banch spaces and approximation theory, Notes Sept.-Nov. 1970, Lund, 1972.
[26] Pietsch, A., Einige neue Klassen von kompaklen linearen Abbildungen, J. Math. Pures Appl., 3, 427-447 (1963) · Zbl 0133.07203
[27] Pietsch, A., Ideal von Operatoren in Banachräumen, Mitt. Math. Gesselsch. D.D.R., 1, 1-14 (1968) · Zbl 0174.44202
[28] Pietsch, A., Ideale von S_p-Operatoren in Banachràumen, Studia Math., 38, 59-69 (1970) · Zbl 0213.14505
[29] Rolewicz, S., On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III, 5, 471-473 (1957) · Zbl 0079.12602
[30] Stečkin, S. B., Best approximation of linear operators, Mat. Zametki, 1, 137-148 (1967)
[31] S. B. Stečkin,Best approximation of differentiation operators, Budapest Meeting, Aug. 1969. Unpublished lecture.
[32] Triebel, H., Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen, Inv. Math., 4, 275-293 (1967) · Zbl 0165.14501
[33] Triebel, H., Interpolationseigenschaften von Entropie- und Durchmesseridealen kompakter Operatoren, Studia Math., 34, 89-107 (1970) · Zbl 0189.43702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.