×

zbMATH — the first resource for mathematics

Free subgroups in linear groups. (English) Zbl 0236.20032

MSC:
20G15 Linear algebraic groups over arbitrary fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel, A; Tits, J, Groupes réductifs, Publ. math. I. H. E. S., 27, 55-150, (1965) · Zbl 0145.17402
[2] Borel, A; Tits, J, Éléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. math., 12, 95-104, (1971) · Zbl 0238.20055
[3] Bourbaki, N, Algèbre, chap. 8: modules et anneaux semi-simples, () · Zbl 1245.16001
[4] Curtis, C.W; Reiner, I, Representation theory of finite groups and associative algebras, (1962), Interscience New York · Zbl 0131.25601
[5] Platonov, V.P, Lineinye gruppy s toždestvennymi sootnošenijami, Dokl. akad. nauk BSSR, 11, 581-583, (1967)
[6] Platonov, V.P, O probleme malčeva, Mat. sbornik, 79, 121, 621-624, (1969)
[7] Tits, J, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. reine angew. math., 247, 196-220, (1971) · Zbl 0227.20015
[8] Weil, A, Basic number theory, () · Zbl 0823.11001
[9] Wolf, J.A, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. differential geom., 2, 421-446, (1968) · Zbl 0207.51803
[10] Zassenhaus, H, On linear Noetherian groups, J. number theory, 1, 70-89, (1969) · Zbl 0205.03902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.