×

zbMATH — the first resource for mathematics

Galois properties of points of finite order of elliptic curves. (Propriétés galoisiennes des points d’ordre fini des courbes elliptiques.) (French) Zbl 0235.14012

MSC:
11G05 Elliptic curves over global fields
14H25 Arithmetic ground fields for curves
14G05 Rational points
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, E.: Geometric algebra. New York: Interscience Publ. 1957 (trad. française par M. Lazard. Paris: Gauthier-Villars 1962). · Zbl 0077.02101
[2] Billing, G., Mahler, K.: On exceptional points on cubic curves. J. London Math. Soc.15, 32-43 (1940). · Zbl 0026.19901 · doi:10.1112/jlms/s1-15.1.32
[3] Casselman, W.: On abelian varieties with many endomorphisms and a conjecture of Shimura. Inventiones math.12, 225-236 (1971). · Zbl 0213.47303 · doi:10.1007/BF01418782
[4] Cassels, J.: Diophantine equations with special reference to elliptic curves. J. London Math. Soc.41, 193-291 (1966). · Zbl 0138.27002 · doi:10.1112/jlms/s1-41.1.193
[5] Cassels, J., Fröhlich, A., (ed.). Algebraic number theory. New York: Academic Press 1967. · Zbl 0153.07403
[6] Curtis, C., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Interscience Publ. 1962. · Zbl 0131.25601
[7] Deligne, P.: Formes modulaires et représentationsl-adiques. Séminaire Bourbaki, 1968/69, exposé355. Lecture Notes in Math.179. Berlin-Heidelberg-New York: Springer 1971.
[8] Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg14, 197-272 (1941). · Zbl 0025.02003 · doi:10.1007/BF02940746
[9] Deuring, M.: Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins. Gött. Nach., 85-94 (1953); II,ibid., Deuring, M.: Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins. Gött. Nach., 13-42 (1955); III,ibid., Deuring, M.: Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins. Gött. Nach. 37-76 (1956); IV,ibid., Deuring, M.: Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins. Gött. Nach. 55-80 (1957). · Zbl 0064.27401
[10] Deuring, M.: Die Klassenkörper der komplexen Multiplikation Enz. Math. Wiss., Band I-2 Heft 10, Teil II. Stuttgart: Teubner 1958. · Zbl 0123.04001
[11] Fricke, R.: Lehrbuch der Algebra. Bd. III. Brauschweig: Fried. Vieweg & Sohn 1928.
[12] Fröhlich, A.: Formal groups. Lecture Notes in Math.74. Berlin-Heidelberg-New York: Springer 1968. · Zbl 0177.04801
[13] Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959.
[14] Lubin, J.: Finite subgroups and isogenies of one-parameter formal Lie groups. Ann. of. Math.85, 296-302 (1967). · Zbl 0166.02803 · doi:10.2307/1970443
[15] Mumford, D.: Abelian varieties. Oxford Univ. Press 1970. · Zbl 0223.14022
[16] Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. I.H.E.S.21, 1-128 (1964).
[17] Neumann, O.: Zur Reduktion der elliptischen Kurven. Math. Nach.46, 285-310 (1970). · Zbl 0204.54502 · doi:10.1002/mana.19700460123
[18] Ogg, A.: Abelian curves of 2-power conductor. Proc. Camb. Phil. Soc.62, 143-148 (1966). · Zbl 0163.15403 · doi:10.1017/S0305004100039670
[19] Ogg, A.: Elliptic curves and wild ramification. Amer. J. of Math.89, 1-21 (1967). · Zbl 0147.39803 · doi:10.2307/2373092
[20] Ogg, A.: Rational points of finite order on elliptic curves. Inventiones math.12, 105-111 (1971). · Zbl 0216.05602 · doi:10.1007/BF01404654
[21] Raynaud, M.: Schémas en groupes de type (p,...,p). En préparation
[22] Roquette, P.: Analytic theory of elliptic functions over local fields. Göttingen: Vandenhoeck und Ruprecht 1970
[23] ?afarevi?, I.: Corps de nombres algébriques (en russe). Proc. Inter. Congr. Math. Stockholm, 163-176 (1962) [Trad. anglaise: Amer. Math. Transl., ser.2, vol. 31, 25-39 (1963)].
[24] Serre, J.-P.: Sur les corps locaux à corps résiduel algébriquement clos. Bull. Soc. Math. France89, 105-154 (1961). · Zbl 0166.31103
[25] Serre, J.-P.: Corps Locaux (2ème édition). Paris: Hermann 1968.
[26] Serre, J.-P.: Groupes de Liel-adiques attachés aux courbes elliptiques. Colloque Clermont-Ferrand, 239-256, C.N.R.S. 1964.
[27] Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968 (cité MG).
[28] Serre, J.-P.: Une interprétation des congruences relatives à la fonction ? de Ramanujan. Séminaire Delange-Pisot-Poitou, 1967/68, no 14.
[29] Serre, J.-P.: Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Séminaire Delange-Pisot-Poitou, 1969/70, no 19.
[30] Serre, J.-P., Tate, J.: Good reduction of abelian varieties. Ann. of Math.88, 492-517 (1968). · Zbl 0172.46101 · doi:10.2307/1970722
[31] Shimura, G.: A reciprocity law in non-solvable extensions. J. Crelle221, 209-220 (1966). · Zbl 0144.04204 · doi:10.1515/crll.1966.221.209
[32] Shimura, G.: Class fields over real quadratic fields in the theory of modular functions. Lecture Notes185 (Several complex variables II). p. 169-188. Berlin-Heidelberg-New York: Springer 1971.
[33] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, no11. Tokyo-Princeton, 1971. · Zbl 0221.10029
[34] Shimura, G., Taniyama, Y.: Complex multiplication of abelian varieties and its applications to number theory, Publ. Math. Soc. Japan6 (1961) · Zbl 0112.03502
[35] Vélu, J.: Courbes elliptiques surQ ayant bonne réduction en dehors de {11}. C. R. Acad. Sci. Paris273 73-75 (1971). · Zbl 0225.14013
[36] Weber, H.: Lehrbuch der Algebra, Bd. II (zw. Auf.). Braunschweig 1899.
[37] Weil, A.: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc.55, 497-508 (1949). · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
[38] Weil, A.: Jacobi sums as ?Größencharaktere?. Trans. Amer. Math. Soc.73, 487-495 (1952). · Zbl 0048.27001
[39] Weil, A.: On a certain type of characters of the idèle-class group of an algebraic number-field. Proc. Int. Symp. Tokyo-Nikko, 1-7 (1955).
[40] Weil, A.: On the theory of complex multiplication. Proc. Int. Symp., Tokyo-Nikko, 9-22 (1955).
[41] Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149-156 (1967). · Zbl 0158.08601 · doi:10.1007/BF01361551
[42] Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1967. · Zbl 0176.33601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.