×

zbMATH — the first resource for mathematics

Euler products, cyclotomy, and coding. (English) Zbl 0235.12014

MSC:
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
11T22 Cyclotomy
94B15 Cyclic codes
11T24 Other character sums and Gauss sums
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berlekamp, E.R, ()
[2] Carlitz, L, Kloosterman sums and finite field extensions, Acta arith, 16, 179-193, (1969) · Zbl 0194.07902
[3] Davenport, H; Hasse, H, Die nullstellen der kongruenzzetafunktionen in gewissen zyklischen fallen, J. reine angew. math., 172, 151-182, (1935) · JFM 60.0913.01
[4] Delsarte, P; Goethals, J.-M, Irreducible binary cyclic codes of even dimension, (), 100-113 · Zbl 0212.23303
[5] Dickson, L.E, Cyclotomy, higher congruences, and Waring’s problem, Amer. J. math., 57, 391-424, (1935) · Zbl 0012.01203
[6] Lehmer, D.H; Lehmer, Emma, The cyclotomy of hyper-Kloosterman sums, Acta arith., 14, 89-111, (1968) · Zbl 0192.39401
[7] Schmid, H.L, Relationen zwischen verallgemeinerten gausschen summen, J. reine angew. math., 176, 198, (1937) · JFM 63.0143.04
[8] Weil, A, Numbers of solutions of equations in finite fields, Bull. amer. math. soc., 55, 497-508, (1949) · Zbl 0032.39402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.