×

zbMATH — the first resource for mathematics

Zur Interpolation von Operatorenräumen. (The interpolation of operator spaces). (German) Zbl 0231.46038

MSC:
46B70 Interpolation between normed linear spaces
46M35 Abstract interpolation of topological vector spaces
46B28 Spaces of operators; tensor products; approximation properties
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. L.Butzer andBerens, Semi-groups of operators and approximation. Berlin 1967.
[2] N.Duntford and J.Schwartz, Linear operators, vol. 1. New York 1958.
[3] S. Kwapi?n, Some remarks on (p,q)-absolutely summing operators in lp-spaces. Studia Math.29, 327-337 (1968).
[4] J.Peetre, A theory of interpolation of normed spaces. Brasilia 1963 (= Notas Mat. no. 39 (1968)). · Zbl 0162.44502
[5] J.Peetre, On the connection between the theory of interpolation spaces and approximation theory. · Zbl 0235.46056
[6] J. Peetre, Sur les espaces de Besov. C. R. Acad. Sci. Paris264, 281-283 (1967). · Zbl 0145.16206
[7] A. Persson, Compact linear mappings between interpolation spaces. Ark. Mat.5, 215-219 (1964). · Zbl 0128.35204 · doi:10.1007/BF02591123
[8] Ju. J. Petunin, Pr?nukleare Operatoren in Skalen von Banach- und Hilbertr?umen. Dokl. Akad. Nauk SSSR173, 40-43 (1967) (Russisch).
[9] A. Pietsch, Gegenbeispiele zur Interpolationstheorie der nuklearen und absolutsummierenden Operatoren. Arch. Math.20, 65-71 (1969). · Zbl 0175.43301 · doi:10.1007/BF01898993
[10] H. Triebel, Interpolationseigenschaften von Entropie- und Durchmesseridealen kompakter Operatoren. Studia Math.34, 89-107 (1970). · Zbl 0189.43702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.