×

zbMATH — the first resource for mathematics

Estimating structural and functional relationships. (English) Zbl 0219.62011

MSC:
62H99 Multivariate analysis
62A01 Foundations and philosophical topics in statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allen, R.G.D., Assumptions of linear regression, Econometrica, 6, 199-204, (1939)
[2] Austen, A.E.W.; Pelzer, H., Linear curves of best fit, Nature, 157, 693-694, (1946) · Zbl 0060.31508
[3] Barnett, V.D., A note on linear structural relationships when both residual variances are known, Biometrika, 54, 670-672, (1967)
[4] Bartlett, M.S., Fitting a straight line when both variables are subject to error, Biometrics, 5, 207-212, (1949)
[5] Barton, D.E.; David, F.N., Models of functional relationship illustrated on astronomical data, Bull. inst. internat. statist., 37, 9-33, (1960) · Zbl 0091.31103
[6] Basu, A.P., On some tests for several linear relations, J. roy. statist. soc. ser. B, 31, 65-71, (1969) · Zbl 0176.48503
[7] Berkson, J., Are there two regressions?, J. amer. statist. assoc., 45, 164-180, (1950) · Zbl 0040.22404
[8] Brown, R.L., The bivariate structural relation, Biometrika, 44, 84-96, (1957) · Zbl 0117.14602
[9] Brown, R.L.; Fereday, F., Multivariate linear structural relations, Biometrika, 45, 136-153, (1958) · Zbl 0088.35504
[10] Carlson, F.D.; Sobel, E.; Watson, G.S., Linear relationships between variables affected by error, Biometrics, 22, 252-267, (1966)
[11] Creasy, M.A., Confidence limits for the gradient in the linear structural relationship, J. roy. statist. soc. ser. B, 18, 65-69, (1957) · Zbl 0070.37801
[12] Dorff, M.; Gurland, J., Estimation of the parameters of a linear functional relationship, J. roy. statist. soc. ser. B, 23, 160-170, (1961) · Zbl 0115.14101
[13] Dorff, M.; Gurland, J., Small sample behaviour of slope estimators in a linear functional relation, Biometrics, 17, 283-298, (1961) · Zbl 0213.44202
[14] Drion, E.F., Estimation of the parameters of a straight line and of the variances of the variables, if they are both subject to error, Indag. math., 13, 256-260, (1951) · Zbl 0042.38602
[15] Durbin, J., Errors in variables, Rev. inst. internat. statist., 22, 23-32, (1954) · Zbl 0058.13202
[16] Geary, R.C., Inherent relations between random variables, (), 63-76 · Zbl 0063.01553
[17] Geary, R.C., Determination of linear relations between systematic parts of variables with errors of observation the variances of which are unknown, Econometrica, 17, 30-59, (1949) · Zbl 0037.09003
[18] Geary, R.C., Some remarks about relations between stochastic variables: A discussion document, Rev. inst. internat. statist., 31, 163-181, (1963) · Zbl 0143.43303
[19] Gini, C., Sull’interpolazione di una retta quando i valori Della variabile indipendente sono affetti de errori accidentali, Metron., 1, No. 3, 63-82, (1921)
[20] Halperin, M., Fitting of straight lines and prediction when both variables are subject to error, J. amer. statist. assoc., 56, 657-669, (1961) · Zbl 0108.16004
[21] Halperin, M.; Gurian, J., On the expected value of the classical estimate of slope in straight line regression when both variables are subject to error, Bull. inst. internat. statist., 43, 131-133, (1969), Book 2
[22] Housner, G.W.; Brennan, J.F., The estimation of linear trends, Ann. math. statist., 19, 380-388, (1948) · Zbl 0032.04502
[23] Jeffreys, H., ()
[24] Keeping, E.S., Note on Wald’s method of Fitting a straight line when both variables are subject to error, Biometrics, 12, 445-448, (1956)
[25] Kendall, M.G., Regression, structure and functional relationship. I, Biometrika, 38, 11-25, (1951) · Zbl 0045.41202
[26] Kendall, M.G., Regression, structure and functional relationship. II, Biometrika, 39, 96-108, (1952) · Zbl 0049.22501
[27] Kendall, M.G., ()
[28] Kendall, M.G.; Stuart, A., ()
[29] Kiefer, J., Review of Kendall and Stuart’s advanced theory of statistics, II, Ann. math. statist., 35, 1371-1380, (1964)
[30] Kiefer, J.; Wolfowitz, J., Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters, Ann. math. statist., 27, 887-906, (1956) · Zbl 0073.14701
[31] Koopmans, T.C., Identification problems in economic model construction, Econometrica, 17, 125-143, (1949)
[32] Koopmans, T.C.; Reiersøl, O., The identification of structural characteristics, Ann. math. statist., 21, 165-181, (1950) · Zbl 0038.29303
[33] Kruskal, W.H., On the uniqueness of the line of organic correlation, Biometrics, 9, 47-58, (1953)
[34] Lindley, D.V., Regression lines and the linear functional relationship, Suppl. J. roy. statist. soc., 9, 218-244, (1947) · Zbl 0031.17202
[35] Lindley, D.V., Estimation of a functional relationship, Biometrika, 40, 47-49, (1953) · Zbl 0052.36903
[36] Lindley, D.V.; El-Sayyad, G.M., The Bayesian estimation of a linear functional relationship, J. roy. statist. soc. ser. B, 30, 190-202, (1968) · Zbl 0155.26102
[37] McIntyre, G.A.; Brooks, C.; Compston, W.; Turek, A., The statistical assessment of rb-sr isochrons, J. geophys. res., 71, 5459-5468, (1966)
[38] Madansky, A., The Fitting of straight lines when both variables are subject to error, J. amer. statist. assoc., 54, 173-205, (1959) · Zbl 0088.35804
[39] Moran, P.A.P., A test of significance for an unidentifiable relation, J. roy. statist. soc. ser. B, 18, 61-64, (1956) · Zbl 0072.36007
[40] Nair, K.R.; Banerjee, K.S., Note on Fitting of straight lines if both variables are subject to error, Sankhy\( a\), 6, 331, (1942) · Zbl 0060.31507
[41] Nair, K.R.; Shrivastava, M.P., On a simple method of curve Fitting, Sankhy\( a\), 6, 121-132, (1942) · Zbl 0063.05482
[42] Neyman, J., Remarks on a paper by E. C. rhodes, J. roy. statist. soc., 100, 50-57, (1937)
[43] Neyman, J., Existence of consistent estimates of the directional parameter in a linear structural relation between two variables, Ann. math. statist., 22, 497-512, (1951) · Zbl 0043.34902
[44] Neyman, J.; Scott, E., Consistent estimates based on partially consistent observations, Econometrica, 16, 1-32, (1948) · Zbl 0034.07602
[45] Neyman, J.; Scott, E., On certain methods of estimating the linear structural relationship, Ann. math. statist., 22, 352-361, (1951), (Correction 23, 135) · Zbl 0043.13901
[46] Ord, J.K., A new approach to the estimation of parameters in linear functional relationships, Bull. inst. internat. statist., 43, 169-171, (1969), Book 2
[47] Pearson, K., On lines and planes of closest fit to systems of points in space, Phil. mag. ser. 6, 2, 559-572, (1901) · JFM 32.0246.07
[48] Reiersøl, O., Confluence analysis by means of instrumental sets of variables, Ark. mat. astron. fys., 32, 1-119, (1945) · Zbl 0063.06462
[49] Reiersøl, O., Identifiability of a linear relation between variables which are subject to error, Econometrica, 18, 375-389, (1950)
[50] Scott, E.L., Note on consistent estimates of the linear structural relation between two variables, Ann. math. statist., 21, 284-288, (1950) · Zbl 0038.29703
[51] Solari, M.E., The ‘maximum likelihood solution’ of the problem of estimating a linear functional relationship, J. roy. statist. soc. ser. B, 31, 372-375, (1969)
[52] Sprent, P., A generalised least-squares approach to linear functional relationships, J. roy. statist. soc. ser. B, 28, 278-297, (1966) · Zbl 0147.37804
[53] Stepanek, V., A special procedure in estimating parameters in linear structural relationships, Bull. inst. internat. statist., 43, 179-181, (1969), Book 2
[54] Theil, H.; Theil, H.; Theil, H., A rank invariant method of linear and polynomial regression analysis I, II, III, (), 1397-1412 · Zbl 0038.29504
[55] Indag. Math.\bf12 85-91, 173-177, 467-482.
[56] Theil, H.; Van Yzeren, J., On the efficiency of Wald’s method of Fitting straight lines, Rev. inst. internat. statist., 24, 17-26, (1956) · Zbl 0073.36101
[57] Tukey, J.W., Components in regression, Biometrics, 7, 33-69, (1951)
[58] Villegas, C., Maximum likelihood estimation of a linear functional relationship, Ann. math. statist., 32, 1048-1062, (1961) · Zbl 0104.12902
[59] Villegas, C., Confidence region for a linear relation, Ann. math. statist., 35, 780-788, (1969) · Zbl 0133.11901
[60] Wald, A., The Fitting of straight lines if both variables are subject to error, Ann. math. statist., 11, 284-300, (1940) · JFM 66.0638.03
[61] Wolfowitz, J., Estimation of the components of stochastic structures, (), 602-606 · Zbl 0055.37601
[62] Wolfowitz, J., Consistent estimators of the parameters of a linear structural relation, Skand. aktuarietidskr., 35, 132-151, (1952) · Zbl 0048.36903
[63] Wolfowitz, J., Estimation by the minimum distance method, Ann. inst. statist. math. Tokyo, 5, 9-23, (1953) · Zbl 0051.37004
[64] York, D., Least squares Fitting of a straight line, Canad. J. phys., 44, 1079-1086, (1966) · Zbl 0144.42402
[65] York, D., The best isochron, Earth and planet. sci. lett., 2, 479-482, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.