×

zbMATH — the first resource for mathematics

On the Arens product and annihilator algebras. (English) Zbl 0218.46059

MSC:
46L05 General theory of \(C^*\)-algebras
47L45 Dual algebras; weakly closed singly generated operator algebras
46H20 Structure, classification of topological algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839 – 848. · Zbl 0044.32601
[2] Bruce A. Barnes, Modular annihilator algebras, Canad. J. Math. 18 (1966), 566 – 578. · Zbl 0156.04003 · doi:10.4153/CJM-1966-055-6 · doi.org
[3] Robert C. Busby, Double centralizers and extensions of \?*-algebras, Trans. Amer. Math. Soc. 132 (1968), 79 – 99. · Zbl 0165.15501
[4] Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847 – 870. · Zbl 0119.10903
[5] Paul Civin, Ideals in the second conjugate algebra of a group algebra, Math. Scand. 11 (1962), 161 – 174. · Zbl 0178.16603 · doi:10.7146/math.scand.a-10663 · doi.org
[6] Jacques Dixmier, Les \?*-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). · Zbl 0288.46055
[7] L. Terrell Gardner, On isomorphisms of \?*-algebras, Amer. J. Math. 87 (1965), 384 – 396. · Zbl 0139.30602 · doi:10.2307/2373010 · doi.org
[8] George W. Mackey, Isomorphisms of normed linear spaces, Ann. of Math. (2) 43 (1942), 244 – 260. · Zbl 0061.24210 · doi:10.2307/1968868 · doi.org
[9] Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. · Zbl 0095.09702
[10] B. J. Tomiuk and Pak-ken Wong, The Arens product and duality in \?*-algebras, Proc. Amer. Math. Soc. 25 (1970), 529 – 535. · Zbl 0198.17902
[11] Pak-ken Wong, The Arens product and duality in \?*-algebras. II, Proc. Amer. Math. Soc. 27 (1971), 535 – 538. · Zbl 0209.44404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.