McMullen, P. The maximum numbers of faces of a convex polytope. (English) Zbl 0217.46703 Mathematika, Lond. 17, 179-184 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 189 Documents MSC: 52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.) 52B11 \(n\)-dimensional polytopes PDF BibTeX XML Cite \textit{P. McMullen}, Mathematika 17, 179--184 (1970; Zbl 0217.46703) Full Text: DOI References: [1] DOI: 10.1007/BF01449498 · JFM 37.0492.01 · doi:10.1007/BF01449498 [2] Brückner, Jber. Ver. Naturk. Zwickau (1893) [3] DOI: 10.1098/rspa.1927.0078 · JFM 53.0578.03 · doi:10.1098/rspa.1927.0078 [4] DOI: 10.1090/S0002-9904-1957-10103-7 · doi:10.1090/S0002-9904-1957-10103-7 [5] Gale, Canad. J. Math. 16 pp 12– (1964) · Zbl 0128.17103 · doi:10.4153/CJM-1964-002-x [6] Klee, Canad. J. Math. 16 pp 517– (1964) · Zbl 0134.42403 · doi:10.4153/CJM-1964-053-0 [7] DOI: 10.1007/BF02771542 · Zbl 0194.53802 · doi:10.1007/BF02771542 [8] Grunbaum, Convex polytopes (1967) [9] Klee, Canad. J. Math. 16 pp 701– (1964) · Zbl 0128.17201 · doi:10.4153/CJM-1964-067-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.