×

zbMATH — the first resource for mathematics

Kollineationsgruppen kompakter, vier-dimensionaler Ebenen. (English) Zbl 0205.50104

MSC:
51J10 Projective incidence groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Betten, D.: Nicht-desarguessche 4-dimensionale Ebenen. Arch. der Math.21, 100-102 (1970). · Zbl 0204.53501 · doi:10.1007/BF01220886
[2] Breitsprecher, S.: Projektive Ebenen, die Mannigfaltigkeiten sind. Math. Z. eingereicht. · Zbl 0229.50021
[3] Brouwer, L. E. J.: Beweis des ebenen Translationssatzes. Math. Ann.72, 37-54 (1912). · JFM 43.0569.02 · doi:10.1007/BF01456888
[4] ?: Über die periodischen Transformationen der Kugel. Math. Ann.80, 39-41 (1919). · JFM 47.0527.01 · doi:10.1007/BF01463233
[5] Cartan, E.: Les groupes réels simples finis et continus. Ann. Sci. École Norm. Sup.31, 263-355 (1914)=OEuvres I1, 399-491. · JFM 45.1408.03
[6] Dugundji, J.: Topology. Boston: Allyn and Bacon 1966.
[7] Gantmacher, F.: On the classification of real simple Lie groups. Mat. Sbornik5 (47), 217-250 (1939). · JFM 65.1131.03
[8] Hofmann, K. H.: Topologische distributive Doppelloops. Math. Z.71, 36-68 (1959). · Zbl 0095.02704 · doi:10.1007/BF01181385
[9] Hopf, H.: Zur Algebra der Abbildungen von Mannigfaltigkeiten. J. reine angew. Math.163, 71-88 (1930). · JFM 56.0501.03 · doi:10.1515/crll.1930.163.71
[10] Hurewicz, W., Wallman, H.: Dimension theory. Princeton Univ. Press 1948. · Zbl 0036.12501
[11] Kestelman, H.: Automorphisms of the field of complex numbers. Proc. London Math. Soc. (2)53, 1-12 (1951). · Zbl 0042.39304 · doi:10.1112/plms/s2-53.1.1
[12] Montgomery, D.: Simply connected homogeneous spaces. Proc. Amer. Math. Soc.1, 467-469 (1950). · Zbl 0041.36309 · doi:10.1090/S0002-9939-1950-0037311-6
[13] ?: Finite dimensionality of certain transformation groups. Illinois J. Math.1, 28-35 (1957). · Zbl 0077.36702
[14] ? Zippin, L.: Topological transformation groups. New York: Interscience Publ. 1955. · Zbl 0068.01904
[15] Nagata, J.: Modern dimension theory. New York: Interscience Publ. 1965. · Zbl 0129.38304
[16] Pasynkov, B. A.: On the coincidence of various definitions of dimensionality for factor spaces of locally bicompact groups. Uspehi Mat. Nauk17, no. 5 (107), 129-135 (1962).
[17] Poncet, J.: Groupes de Lie compacts de transformations de l’espace euclidien et les spheres comme espaces homogènes. Commentarii Math. Helvet.33, 109-120 (1959). · Zbl 0084.19006 · doi:10.1007/BF02565911
[18] Pontrjagin, L. S.: Topologische Gruppen, Teil 2. Leipzig: Teubner 1958. · Zbl 0085.01704
[19] Salzmann, H.: Kompakte zweidimensionale projektive Ebenen. Math. Ann.145, 401-428 (1962). · Zbl 0103.13503 · doi:10.1007/BF01471086
[20] ?: Topological planes. Advances Math.2, 1-60 (1967). · Zbl 0153.21601 · doi:10.1016/S0001-8708(67)80002-1
[21] ?: Kompakte vier-dimensionale Ebenen. Arch. der Math.20, 551-555 (1969). · Zbl 0189.20801 · doi:10.1007/BF01899463
[22] ?: Homomorphismen komplexer Ternärkörper. Math. Z.112, 23-25 (1969). · Zbl 0176.17601 · doi:10.1007/BF01277491
[23] Skornjakov, L. A.: Topological projective planes. Trudy Moskov. Mat. Ob??.3, 347-373 (1954).
[24] Smith, P. A.: Transformations of finite period. III. Newman’s theorem. Ann. of Math.42, 446-458 (1941). · JFM 67.0743.01 · doi:10.2307/1968910
[25] ?: New results and old problems in finite transformation groups. Bull. Amer. Math. Soc.66, 401-415 (1960). · Zbl 0096.37501 · doi:10.1090/S0002-9904-1960-10491-0
[26] Spanier, E. H.: Algebraic topology. New York: McGraw-Hill 1966. · Zbl 0145.43303
[27] Sperner, E.: Über die fixpunktfreien Abbildungen der Ebene. Abh. Math. Sem. Univ. Hamburg10, 1-48 (1934). · JFM 60.0518.02 · doi:10.1007/BF02940663
[28] Tits, J.: Tabellen zu den einfachen Liegruppen und ihren Darstellungen. Lecture Notes in Math.40. Berlin-Heidelberg-New York: Springer 1967. · Zbl 0166.29703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.