×

zbMATH — the first resource for mathematics

On the relevance of abstract algebra to control theory. (English) Zbl 0199.49303

MSC:
93B99 Controllability, observability, and system structure
93C05 Linear systems in control theory
Keywords:
control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arbib, M.A., A common framework for automata theory and control theory, J. SIAM control, 3, No. 2, (1965), Ser. A · Zbl 0145.12401
[2] Arbib, M.A., Automata theory and control theory—a rapprochement, Automatica, 3, 161-189, (1966) · Zbl 0141.28402
[3] Arbib, M.A., Automaton decompositions and semigroup extensions, () · Zbl 0156.25404
[4] Gilbert, E.G., Controllability and observability in multivariable systems, J. SIAM control, 1, 128-151, (1963) · Zbl 0143.12401
[5] Give’on, Y.; Arbib, M.A., Algebra automata II: the categorical framework for dynamical analysis, In. control, 12, 346-370, (1968) · Zbl 0164.32201
[6] Ho, B.L., An effective construction of realizations from input/output descriptions, ()
[7] Kalman, R.E., Mathematical description of linear dynamical systems, J. SIAM control, 1, 152-192, (1963) · Zbl 0145.34301
[8] Kalman, R.E., Algebraic structure of linear dynamical systems, 1: the module of ∑, (), 1503-1508, No. 6 · Zbl 0144.11604
[9] Kalman, R.E.; Falb, P.L.; Arbib, M.A., Topics in mathematical system theory, (1969), McGraw-Hill New York · Zbl 0231.49001
[10] MacLane, S.; Birkhoff, G., Algebra, (1967), Macmillan New York · Zbl 0153.32401
[11] Myhill, J., Finite automata and the representation of events, WADC tech. report, 57-624, (1957)
[12] Nerode, A, Linear automaton transformations, (), 541-544 · Zbl 0089.33403
[13] Rabin, M.O.; Scott, D., Finite automata and their decision problems, IBM J. res. and dev, 3, 114-125, (1959) · Zbl 0158.25404
[14] Raney, G., Sequential functions, J. ass. comput. Mach, 5, 177-180, (1958) · Zbl 0088.01801
[15] Zeiger, H.P., Ho’s algorithm, commutative diagrams and the uniqueness of minimal linear systems, Inf. control, 11, 71-79, (1967) · Zbl 0178.10002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.