×

zbMATH — the first resource for mathematics

Mechanics on manifolds and the incorporation of spin into Nelson’s stochastic mechanics. (English) Zbl 0199.28201

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abraham, R. [1], Foundations of Mechanics. New York 1967. · Zbl 0158.42901
[2] Bohm, D., & R. Schiller [1], A causal interpretation of the Pauli equation (B). Nuovo Cimento, Suppl. (Ser.10) 1, no. 1, 67-91 (1955). · Zbl 0064.44701 · doi:10.1007/BF02743529
[3] Bohm, D., R. Schiller, & J. Tiomno [1], A causal interpretation of the Pauli equation (A). Nuovo Cimento, Suppl. (Ser. 10) 1, no. 1, 48-66 (1955). · Zbl 0064.44608 · doi:10.1007/BF02743528
[4] Bopp, F., & R. Haag [1], Über die Möglichkeit von Spinmodellen. Z. Naturforschg. 5a, 644-653 (1950). · Zbl 0040.42503
[5] Doob, J. L. [1], Stochastic Processes. New York 1953. · Zbl 0053.26802
[6] Edmonds, A. R. [1], Angular Momentum in Quantum Mechanics. Princeton 1960. · Zbl 0860.00016
[7] Friedman, A. [1], Partial Differential Equations of Parabolic Type. Englewood Cliffs (1964). · Zbl 0144.34903
[8] Goldstein, H. [1], Classical Mechanics. Reading (1950).
[9] Kolmogoroff, A. N. [1], Analytische Methoden der Wahrscheinlichkeitsrechnung. Math. Annalen 104, 415-458 (1931). · Zbl 0001.14902 · doi:10.1007/BF01457949
[10] Lang, S. [1], Introduction to Differentiable Manifolds. New York 1962. · Zbl 0103.15101
[11] Lass, H. [1], Elements of Pure and Applied Mathematics. New York 1957. · Zbl 0078.04101
[12] Nelson, E. [1], Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, no. 4, 1079-1085 (1966). · doi:10.1103/PhysRev.150.1079
[13] Nelson, E. [2], Dynamical Theories of Brownian Motion. Princeton 1967. · Zbl 0165.58502
[14] Nelson, E. [3], Tensor Analysis. Princeton 1967. · Zbl 0152.39001
[15] Weitzel, W. [1], Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell. Zeitschrift für Physik 136, 582-604 (1954-55).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.