×

zbMATH — the first resource for mathematics

On detecting open collars. (English) Zbl 0195.53802

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294 – 305. · Zbl 0109.15406
[2] William Browder, Structures on \?\times \?, Proc. Cambridge Philos. Soc. 61 (1965), 337 – 345. · Zbl 0129.39201
[3] W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017 – 1028. · Zbl 0134.42801 · doi:10.2307/2373259 · doi.org
[4] E. H. Connell, D. Montgomery, and C. T. Yang, Compact groups in \?\(^{n}\), Ann. of Math. (2) 80 (1964), 94 – 103. · Zbl 0134.42401 · doi:10.2307/1970493 · doi.org
[5] -, Ann. of Math. 81 (1965), 194 (correction to [4]).
[6] Sylvia de Christ, El transfer en los grupos de Whitehead, Notices Amer. Math. Soc. 13 (1966), 851.
[7] A. Douady, Séminaire H. Cartan, 1961-1962, Secrétariat Mathématique, Paris, Exposé 1.
[8] Samuel Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613 – 622. · Zbl 0061.41103 · doi:10.2307/2371708 · doi.org
[9] D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369 – 383. · Zbl 0148.43103 · doi:10.1112/plms/s3-16.1.369 · doi.org
[10] Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979 – 990. · Zbl 0033.13602 · doi:10.2307/1969408 · doi.org
[11] A. Haefliger and C. T. C. Wall, Piecewise linear bundles in the stable range, Topology 4 (1965), 209 – 214. · Zbl 0151.32602 · doi:10.1016/0040-9383(65)90007-8 · doi.org
[12] J. P. Hempel and D. R. McMillan Jr., Locally nice embeddings of manifolds, Amer. J. Math. 88 (1966), 1 – 19. · Zbl 0139.17001 · doi:10.2307/2373043 · doi.org
[13] Morris W. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comment. Math. Helv. 36 (1961), 103 – 111. · Zbl 0101.16101 · doi:10.1007/BF02566895 · doi.org
[14] Morris W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962), 524 – 530. · Zbl 0151.32604 · doi:10.2307/1970372 · doi.org
[15] Morris W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352 – 356. · Zbl 0112.14602
[16] Morris W. Hirsch, On tangential equivalence of manifolds, Ann. of Math. (2) 83 (1966), 211 – 217. · Zbl 0137.17704 · doi:10.2307/1970427 · doi.org
[17] Morris W. Hirsch, On normal microbundles, Topology 5 (1966), 229 – 240. · Zbl 0148.17601 · doi:10.1016/0040-9383(66)90007-3 · doi.org
[18] J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 69 – 94. · Zbl 0136.21201
[19] J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719 – 745. · Zbl 0123.39601 · doi:10.1112/plms/s3-14.4.719 · doi.org
[20] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808
[21] Klaus Jänich, Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer \?-Mannigfaltigkeiten ohne Rand, Topology 5 (1966), 301 – 320 (German). · Zbl 0153.53703 · doi:10.1016/0040-9383(66)90022-X · doi.org
[22] Michel A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31 – 42 (French). · Zbl 0135.41503 · doi:10.1007/BF02564363 · doi.org
[23] Barry Mazur, Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc. 67 (1961), 377 – 384. · Zbl 0107.17002
[24] Barry Mazur, Relative neighborhoods and the theorems of Smale, Ann. of Math. (2) 77 (1963), 232 – 249. · Zbl 0112.38301 · doi:10.2307/1970215 · doi.org
[25] Barry Mazur, The method of infinite repetition in pure topology. I, Ann. of Math. (2) 80 (1964), 201 – 226. · Zbl 0133.16506 · doi:10.2307/1970391 · doi.org
[26] Barry Mazur, The method of infinite repetition in pure topology. II. Stable applications, Ann. of Math. (2) 83 (1966), 387 – 401. · Zbl 0141.40501 · doi:10.2307/1970474 · doi.org
[27] D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327 – 337. · Zbl 0117.17102 · doi:10.2307/1970548 · doi.org
[28] John Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575 – 590. · Zbl 0102.38103 · doi:10.2307/1970299 · doi.org
[29] J. Milnor., Differential structures, Lectures notes, Princeton University, Princeton, N. J., 1961.
[30] -, Morse theory, Ann. of Math. Studies, No. 51, Princeton Univ. Press, Princeton, N. J., 1963.
[31] -, Microbundles; Part I, Topology 3, Suppl. 1 (1964), 53-80. · Zbl 0124.38404
[32] John Milnor, Lectures on the \?-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. · Zbl 0161.20302
[33] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358 – 426. · Zbl 0147.23104
[34] James Munkres, Differentiable isotopies on the 2-sphere, Michigan Math. J. 7 (1960), 193 – 197. · Zbl 0108.18003
[35] James Munkres, Obstructions to extending diffeomorphisms, Proc. Amer. Math. Soc. 15 (1964), 297 – 299. · Zbl 0126.18702
[36] M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math. (2) 8 (1937), 41-21. · Zbl 0016.27804
[37] M. H. A. Newman, Boundaries of ULC sets in Euclidean \?-space, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 193 – 196. · Zbl 0036.12801
[38] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. · Zbl 0091.37202
[39] Anne Scott, Infinite regular neighborhoods, J. London Math. Soc. 42 (1967), 245 – 253. · Zbl 0147.23702 · doi:10.1112/jlms/s1-42.1.245 · doi.org
[40] L. Siebenmann, Doctoral dissertation, Princeton University, 1965, Dissertation Abstracts, 27 (June 1966), pp. 2044-2045 (Order No. 66-5012), University Microfilms Ltd., 300 N. Zeeb Rd., Box 1346 Ann Arbor, Michigan.
[41] W. B. R. Lickorish and L. C. Siebenmann, Regular neighbourhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969), 207 – 230. · Zbl 0195.53801
[42] L. C. Siebenmann, On detecting Euclidean space homotopically among topological manifolds., Invent. Math. 6 (1968), 245 – 261. · Zbl 0169.55201 · doi:10.1007/BF01404826 · doi.org
[43] -(version of [40] to appear).
[44] L. Siebenmann and J. Sondow, Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv. 41 (1966/1967), 261 – 272. · Zbl 0173.26104 · doi:10.1007/BF02566880 · doi.org
[45] L. Siebenmann, Remarks on topological manifolds, Notices Amer. Math. Soc. 16 (1969), 698. · Zbl 0195.53802
[46] John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481 – 488. · Zbl 0107.40203
[47] -, On infinite processes, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965, pp. 245-254.
[48] John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490 – 503. · Zbl 0121.18202 · doi:10.2307/1970127 · doi.org
[49] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. · Zbl 0054.07103
[50] T. E. Stewart, Fixed point sets and equivalence of differentiable transformation groups, Comment. Math. Helv. 38 (1963), 6 – 13. · Zbl 0141.40503 · doi:10.1007/BF02566906 · doi.org
[51] J. B. Wagoner, Piecewise linear handlebody theory, Doctoral dissertation, Princeton University, Princeton, N.J., 1966, Appendix I, pp. 128-152.
[52] C. T. C. Wall, Finiteness conditions for \?\? complexes. II, Proc. Roy. Soc. Ser. A 295 (1966), 129 – 139.
[53] E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341 – 358. · Zbl 0116.40801 · doi:10.1016/0040-9383(63)90014-4 · doi.org
[54] J. Stallings, On polyhedral topology, Lecture notes on mathematics, Tata Inst. of Fundamental Research, Bombay, 1968. · Zbl 0182.26203
[55] Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189 – 229. · Zbl 0182.57602
[56] M. C. Irwin, Embeddings of polyhedral manifolds, Ann. of Math. (2) 82 (1965), 1 – 14. · Zbl 0132.20003 · doi:10.2307/1970560 · doi.org
[57] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501 – 526. · Zbl 0122.17901 · doi:10.2307/1970538 · doi.org
[58] Paul Alexandroff, On local properties of closed sets, Ann. of Math. (2) 36 (1935), no. 1, 1 – 35. · Zbl 0011.03901 · doi:10.2307/1968660 · doi.org
[59] J. L. Bryant and C. L. Seebeck III, Locally nice embeddings in codimension three, Bull. Amer. Math. Soc. 74 (1968), 378 – 380. · Zbl 0169.26202
[60] N. H. Kuiper and D. Burghelia, Hilbert manifolds, Ann. of Math. (to appear).
[61] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. · Zbl 0145.43303
[62] M. Rothenberg and J. Sondow, Non-linear smooth representations of compact Lie groups, Preprint, Univ. of Chicago, 1969. · Zbl 0396.57003
[63] J. F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0189.54507
[64] R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742 – 749. · Zbl 0189.54701
[65] S. Lang, Tangential homotopy equivalence, Séminaire Bourbaki, 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.