On inequalities of Korn’s type. I: Boundary-value problems for elliptic systems of partial differential equations. (English) Zbl 0193.39001


35J58 Boundary value problems for higher-order elliptic systems
35J25 Boundary value problems for second-order elliptic equations
35J20 Variational methods for second-order elliptic equations
35D30 Weak solutions to PDEs
49J40 Variational inequalities
Full Text: DOI


[1] Nečas, J., Les méthodes directes en théorie des équations elliptiques. Prague: Academia 1967.
[2] Nečas, J., Sur les normes équivalentes dans W p (k) ({\(\Omega\)})et sur la coercitivité des formes formellement positives. Les presses de l’Université de Montréal, Janvier 1966, 102–128.
[3] Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Int. Cracovie Akad. Umiejet, Classe des sc. math. et nat. (1909). · JFM 40.0884.02
[4] Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Math. 48, 2 (1947). · Zbl 0029.17002
[5] Eydus, D. M., On the mixed problem of the theory of elasticity. Dokl. A. N. SSSR 76, 2 (1951) [Russian].
[6] Payne, L. E., & H. F. Weinberger, On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89–98 (1961). · Zbl 0107.31105
[7] Gobert, J., Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Royale des Sciences de Liège 3–4 (1962).
[8] Besov, O. V., On the coerciveness in the anisotropic Sobolev space. Matem. Sbornik 73, 115, 4, 585–599 (1967) [Russian].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.