×

zbMATH — the first resource for mathematics

Markov chain models in life insurance. (English) Zbl 0191.51103

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amsler, Marc-Henri: Les chaÎnes de Markov des assurances vie, invalidité et maladie. Trans. XVIII Int. Congr. Actuaries 731–746 (1968).
[2] Balleer, Martin: Bericht über Markoffsche Prozesse in der Versicherungsmathematik. BlÄtter der deutschen Gesellschaft für Versicherungsmathematik (Deutscher Aktuarverein) e. V. 9 (1), 57–65 (1969).
[3] Bicknell, W. S., andC. J. Nesbitt: Premiums and reserves in multiple decrement theory. (With discussion.) Trans. Soc. Actuaries8, 344–389 (1956).
[4] Buns, Hans, andErik Rosendahl: New Danish Bases of Calculation in Life and Pension Insurance. Skand. Akt. tidskr.49, 158–182 (1966).
[5] DuPasquier, L. G.: Mathematische Theorie der InvaliditÄtsversicherung. Mitteil. Verein. Schweiz. Versicherungsmath.8, 1–153 (1913).
[6] Hansen, Chr.: Om Thieles Differentialligning for Praemiereserver i Livsforsikring. H. Hagerup’s Forlag, KØbenhavn 1946.
[7] Hickman, James C.: A statistical approach to premiums and reserves in multiple decrement theory. (With discussion.) Trans. Soc. Actuaries16, 1–16 and 149–154 (1964).
[8] Hoem, Jan M.: Application of Time-Continuous Markov Chains to Life Insurance. Mimeographed Memorandum dated April 29, 1968, Institute of Economics, University of Oslo (1968).
[9] Jordan, C. W., Jr.: Life Contingencies. The Society of Actuaries (1952).
[10] Klinken, J.van: The Theory of Random Processes and Actuarial Statistics. Dependent and Independent Probabilities. Mitteil. Verein. Schweiz. Versicherungsmath.59, 139–162 (1959). · Zbl 0084.36903
[11] Loéve, Michel: Probability Theory. D. Van Nostrand Co, Inc. (1963).
[12] Reichel, Georg: Die Erwartungswerte allgemeiner Versicherungsleistungen in der Mathematik der Lebensversicherung. BlÄtter der Deutschen Gesellschaft für Versicherungsmathematik (Deutscher Aktuarverein) e.V.8, 407–430 (1967). · Zbl 0171.18503
[13] Romer, B.: Zum Tarifaufbau der Invalidenversicherung. Mitteil. Verein. Schweiz. Versicherungsmath.64, 13–57 (1964). · Zbl 0119.15705
[14] Sand, Bolf: Disability Pension Insurance – a new Method for Calculation of Premiums. Trans. XVIII Int. Congr. Actuaries 529-538 (1968).
[15] Schaertlin, G.: Zur mathematischen Theorie der InvaliditÄtsversicherung. Mitteil. Verein. Schweiz. Versicherungsmath.1, 45–96 (1907). · JFM 38.0283.01
[16] Schuette, D. B., andO. J. Nesbitt: Premium and reserve components in case of additional benefits for a particular cause of death. Trans. XVI Int. Congr. Actuaries1, 126–138 (1960).
[17] Simonsen, W.: Forsikringsmatematik. Hefte I og II KØbenhavns Universitets Fond til Tilvejebringelse af Laeremidler (1966/67).
[18] Sverdrup, Erling: Basic Concepts in Life Assurance Mathematics. Skand. Akt. tidskr.35, 115–131 (1952). · Zbl 0048.12401
[19] Sverdrup, Erling: Forsikring mot invaliditet. Mimeographed, Institute of Mathematics, University of Oslo (1962a).
[20] Sverdrup, Erling: Actuarial Concepts in the Theory of Financing Life Insurance Activities. Skand. Akt. tidskr.45, 190–204 (1962b). · Zbl 0118.35803
[21] Sverdrup, Erling: Estimates and Test Procedures in Connection with Stochastic Models for Deaths, Recoveries and Transfers between different States of Health. Skand. Akt. tidskr.48, 184–211 (1965). · Zbl 0166.15902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.