×

zbMATH — the first resource for mathematics

Block implicit one-step methods. (English) Zbl 0187.40202

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Stoller and D. Morrison, A method for the numerical integration of ordinary differential equations, Math. Tables Aids Comput. 12 (1958), 269 – 272. · Zbl 0093.31001
[2] F. Ceschino and J. Kuntzmann, Numerical solution of initial value problems, Translated from the French by D. Boyanovitch, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. · Zbl 0154.17003
[3] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50 – 64. · Zbl 0123.11701
[4] J. Barkley Rosser, A Runge-Kutta for all seasons, SIAM Rev. 9 (1967), 417 – 452. · Zbl 0243.65041 · doi:10.1137/1009069 · doi.org
[5] Handbook of automation, computation, and control, Vol. 1: control fundamentals, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. · Zbl 0093.09401
[6] Vladimir Ivanovich Krylov, Approximate calculation of integrals, Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962, 1962.
[7] Error in digital computation. Vol. I, Proceedings of an Advanced Seminar conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin (Madison, October 5-7, vol. 1964, John Wiley & Sons, Inc., New York-London-Sydney, 1965.
[8] Germund G. Dahlquist, A special stability problem for linear multistep methods, Nordisk Tidskr. Informations-Behandling 3 (1963), 27 – 43. · Zbl 0123.11703
[9] Anthony Ralston, Relative stability in the numerical solution of ordinary differential equations, SIAM Rev. 7 (1965), 114 – 125. · Zbl 0258.65079 · doi:10.1137/1007011 · doi.org
[10] Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. · Zbl 0112.34901
[11] Hans J. Stetter, Stabilizing predictors for weakly unstable correctors, Math. Comp. 19 (1965), 84 – 89. · Zbl 0127.08302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.