Koecher, M. Gruppen und Lie-Algebren von rationalen Funktionen. (German) Zbl 0181.04503 Math. Z. 109, 349-392 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 19 Documents Keywords:generalized rings, nonassociative rings PDF BibTeX XML Cite \textit{M. Koecher}, Math. Z. 109, 349--392 (1969; Zbl 0181.04503) Full Text: DOI EuDML References: [1] Braun, H., u. M. Koecher: Jordan-Algebren. Berlin-Heidelberg-New York: Springer 1966. [2] Helgason, S.: Differential geometry and symmetric spaces. New York and London: Academic Press 1962. · Zbl 0111.18101 [3] Koecher, M.: Eine Charakterisierung der Jordan-Algebren.Math. Ann.148, 244-256 (1962). · Zbl 0158.28504 · doi:10.1007/BF01470752 [4] ?: Imbedding of Jordan algebras into Lie algebras I. Amer. J. Math.89, 787-816 (1967). · Zbl 0209.06801 · doi:10.2307/2373242 [5] Koecher, M.: On Lie algebras defined by Jordan algebras. Aarhus Universitet, Matematisk Institut (1967), dupl. · Zbl 0265.17003 [6] ?: Über eine Gruppe von rationalen Abbildungen. Inv. math.3, 136-171 (1967). · Zbl 0163.03002 · doi:10.1007/BF01389742 [7] Lister, W. G.: A structure theory of Lie triple systems. Trans. Amer. Math. Soc.72, 217-242 (1952). · Zbl 0046.03404 · doi:10.1090/S0002-9947-1952-0045702-9 [8] Meyberg, K.: Über Jordan-Tripelsysteme. Erscheint demnächst. · Zbl 0186.34501 [9] Tits, J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie. Koninkl. Ned. Akad. d. Wetensch. A69, 530-535 (1962) = Indag. Math.24, Nr. 5 (1962). · Zbl 0104.26002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.