×

zbMATH — the first resource for mathematics

Measurable functions on Hilbert space. (English) Zbl 0178.50001

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin-New York, 1974 (German). Berichtigter Reprint. · Zbl 0008.07708
[2] K. O. Friedrichs and H. N. Shapiro, Integration over Hilbert space and outer extensions, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 336 – 338. · Zbl 0077.31303
[3] K. O. Friedrichs et al., Integration of functionals, New York University, Mimeographed notes, 1957. · Zbl 0089.31601
[4] R. K. Getoor, On characteristic functions of Banach space valued random variables, Pacific J. Math. 7 (1957), 885 – 896. · Zbl 0078.31005
[5] Leonard Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404 – 440. · Zbl 0090.33303
[6] Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, no. 26, Princeton University Press, Princeton, N. J., 1950. · Zbl 0039.33503
[7] I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106 – 134. · Zbl 0070.34003
[8] I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12 – 41. · Zbl 0099.12104
[9] I. E. Segal, Ergodic subgroups of the orthogonal group on a real Hilbert space, Ann. of Math. (2) 66 (1957), 297 – 303. · Zbl 0083.10603 · doi:10.2307/1970001 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.