×

zbMATH — the first resource for mathematics

The homology of symmetric products. (English) Zbl 0177.51404

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Henri Cartan, Sur les groupes d’Eilenberg-Mac Lane \?(\Pi ,\?). I. Méthode des constructions, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 467 – 471 (French). · Zbl 0055.41801
[2] Henri Cartan, Sur les groupes d’Eilenberg-Mac Lane. II, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 704 – 707 (French). · Zbl 0057.15301
[3] -, Séminaire H. Cartan (Exposé 3), Secrétariat Math., Paris, 1954-1955.
[4] Albrecht Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54 – 80. · Zbl 0082.37701 · doi:10.2307/1970043 · doi.org
[5] Albrecht Dold, Decomposition theorems for \?(\?)-complexes, Ann. of Math. (2) 75 (1962), 8 – 16. · Zbl 0125.01201 · doi:10.2307/1970415 · doi.org
[6] S. Eilenberg and S. MacLane, On the groups \( H(\pi ,n)\). I, Ann. of Math. 58 (1953), 58-106. · Zbl 0050.39304
[7] John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357 – 362. · Zbl 0078.36602 · doi:10.2307/1969967 · doi.org
[8] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239 – 281 (German). · Zbl 0091.37102 · doi:10.2307/1970005 · doi.org
[9] George W. Whitehead, Homotopy theory, Mathematics Department, Massachusetts Institute of Technology, Cambridge, Mass., 1953. Compiled by Robert J. Aumann. · Zbl 0053.43402
[10] R. James Milgram, The bar construction and abelian \?-spaces, Illinois J. Math. 11 (1967), 242 – 250. · Zbl 0152.40502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.