×

zbMATH — the first resource for mathematics

High order \(A\)-stable methods for the numerical solution of systems of D.E.’s. (English) Zbl 0176.14604

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkoff, G., Varga, R. S.,Discretization Errors for Well-set Cauchy Problems, I, J. Math. and Physics, Vol. 44, (1965), 1–23, MR 31 #4189. · Zbl 0134.13406 · doi:10.1002/sapm19654411
[2] Butcher, J. C.,Implicit Runge-Kutta Processes, Math. Comp., Vol. 18 (1964), 50–64, MR 28 #2641. · Zbl 0123.11701 · doi:10.1090/S0025-5718-1964-0159424-9
[3] Dahlquist, G.,A Special Stability Problem for Linear Multistep Methods, BIT, Vol. 3 (1963), 27–43, MR 30 #715. · Zbl 0123.11703 · doi:10.1007/BF01963532
[4] Milne, W. E.,Numerical Solution of Differential Equations, John Wiley & Sons, Inc., New York, 1953, MR 16, p. 864. · Zbl 0050.12202
[5] Obrechkoff, N.,Sur les Quadratures Mecaniques (Bulgarian, French summary), Spisanie Bulgar. Akad. Nauk., Vol. 65 (1942), 191–289, MR 10, p. 70.
[6] Ralston, A.,A First Course in Numerical Analysis, McGraw-Hill, New York, 1965, MR 32 #8479. · Zbl 0139.31603
[7] Wall, H. S.,Analytic Theory of Continued Fractions, van Nostrand, New York, 1948, MR 10, p. 32. · Zbl 0035.03601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.