×

zbMATH — the first resource for mathematics

On the Golay perfect binary code. (English) Zbl 0174.50801

MSC:
94B25 Combinatorial codes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jr., E. F. Assmus; Mattson, H. F.: Steiner systems and perfect codes. University of north carolina, institute of statistics mimeo series no. 484.1 (1966) · Zbl 0144.26203
[2] Jr., E. F. Assmus; Mattson, H. F.: Disjoint systems associated with the Mathieu groups. Bull. amer. Math. soc. 72, 843-845 (1966) · Zbl 0158.01405
[3] Jr., E. F. Assmus; Mattson, H. F.: Perfect codes and the Mathieu groups. Arch. math. (Basel) 17, 121-135 (1966) · Zbl 0144.26203
[4] Jr., E. F. Assmus; Mattson, H. F.: On tactical configurations and error-correcting codes. J. combinatorial theory 2, 243-257 (1967) · Zbl 0189.19101
[5] Berlekamp, E. R.: Algebraic coding theory. (1968) · Zbl 0988.94521
[6] Calabi, L.; Myrvaagnes, E.: On the minimal weight of binary group codes. IEEE trans. Information theory, 385-387 (1964)
[7] Carmichael, R. D.: Introduction to the theory of groups of finite order. (1937) · Zbl 0019.19702
[8] Conway, J. H.: A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups. Proc. nat. Acad. sci. USA 61, 398-400 (1968) · Zbl 0186.32401
[9] Goethals, J. M.; Seidel, J. J.: Strongly regular graphs derived from combinatorial designs. Canad. J. Math. 22, 597-614 (1970) · Zbl 0198.29301
[10] Golay, M.: Notes on digital coding. Proc. I.R.E. 37, 637 (1949)
[11] Higman, D. G.; Sims, C. C.: A simple group of order 44,353,000. Math. Z. 105, 110-113 (1968) · Zbl 0186.04002
[12] Hughes, D. R.: On t-designs and groups. Amer. J. Math. 87, 761-778 (1965) · Zbl 0134.03004
[13] Macwilliams, F. J.: A theorem on the distribution of weights in a systematic code. Bell system tech. J. 42, 79-94 (1963)
[14] Massey, J. L.: Threshold decoding. (1963) · Zbl 0197.45302
[15] Nordstrom, A. W.; Robinson, J. P.: An optimum nonlinear code. Information and control 11, 613-616 (1967) · Zbl 0157.26003
[16] Paige, L. J.: A note on the Mathieu groups. Canad. J. Math. 9, 15-18 (1957) · Zbl 0077.03203
[17] Peterson, W. W.: Error-correcting codes. (1961) · Zbl 0105.32802
[18] Pless, V.: Power moment identities on weight distributions in error-correcting codes. Information and control 6, 147-152 (1963) · Zbl 0149.37905
[19] Pless, V.: On the uniqueness of the golay codes. J. combinatorial theory 5, 215-228 (1968) · Zbl 0172.43105
[20] Preparata, F. P.: Weight and distance structure of Nordstrom-Robinson quadratic code. Information and control 12, 466-473 (1968) · Zbl 0169.51003
[21] Preparata, F. P.: A new look at the golay (23, 12) code. IEEE trans. Information theory, 510-511 (1970) · Zbl 0206.21101
[22] Robinson, J. P.: Analysis of Nordstrom’s optimum quadratic code. Proc. hawaii intern. Conf. system sciences, 157-161 (1968)
[23] Witt, E.: Die 5-fach transitive gruppen von Mathieu, über steinersche systeme. Abh. math. Sem. univ. Hamburg 12, 265-275 (1938) · JFM 64.0937.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.