×

zbMATH — the first resource for mathematics

Linear symmetries of free boson fields. (English) Zbl 0171.46901

MSC:
81Txx Quantum field theory; related classical field theories
46N50 Applications of functional analysis in quantum physics
Keywords:
quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Bargmann, On unitary ray representations of continuous groups, Ann. of Math. (2) 59 (1954), 1 – 46. · Zbl 0055.10304 · doi:10.2307/1969831 · doi.org
[2] Richard Brauer and Hermann Weyl, Spinors in \? Dimensions, Amer. J. Math. 57 (1935), no. 2, 425 – 449. · Zbl 0011.24401 · doi:10.2307/2371218 · doi.org
[3] J. M. Cook, The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222 – 245. · Zbl 0052.22701
[4] Jacob Feldman, Examples of non-Gaussian quasi-invariant distributions in Hilbert space, Trans. Amer. Math. Soc. 99 (1961), 342 – 349. · Zbl 0111.32305
[5] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185 – 243. · Zbl 0051.34002
[6] Richard V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273 – 276. · Zbl 0078.11502
[7] I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106 – 134. · Zbl 0070.34003
[8] I. E. Segal, Ergodic subgroups of the orthogonal group on a real Hilbert space, Ann. of Math. (2) 66 (1957), 297 – 303. · Zbl 0083.10603 · doi:10.2307/1970001 · doi.org
[9] I. E. Segal, The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 8 (1957), 197 – 203. · Zbl 0078.29301
[10] I. E. Segal, Distributions in Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc. 88 (1958), 12 – 41. · Zbl 0099.12104
[11] I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), no. 12, 39 pp. (1959). · Zbl 0085.21806
[12] I. E. Segal, Foundations of the theory of dyamical systems of in- finitely many degrees of freedom. II, Canad. J. Math. 13 (1961), 1 – 18. · Zbl 0098.22104 · doi:10.4153/CJM-1961-001-7 · doi.org
[13] -, The characterisation of the physical vacuum, to appear.
[14] B. Sz.Nagy, Spectraldarstellungen linearer Transformationen des hilbertschen Räume, Springer-Verlag, Berlin, 1942.
[15] L. van Hove, Sur certaines représentations unitaires d’un groupe infini de transformations, Mémoires de Acad. Roy. de Belg. No. 1618 (1951). · Zbl 0045.38701
[16] J. v. Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 (1931), no. 1, 570 – 578 (German). · JFM 57.1446.01 · doi:10.1007/BF01457956 · doi.org
[17] H. Weyl, Gruppentheorie und Quantenmechanik, 2d ed., Leipzig, 1931. · JFM 57.1579.01
[18] N. Wiener, The Fourier integral, Dover, New York, 1951.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.