zbMATH — the first resource for mathematics

On classical solutions of the two-dimensional non-stationary Euler equation. (English) Zbl 0166.45302

fluid mechanics
Full Text: DOI
[1] Courant, R., & D. Hilbert, Methods of Mathematical Physics, vol. II. Interscience 1962. · Zbl 0099.29504
[2] Eidus, D. M., Inequalities for Green’s function. Mat. Sb. 45 (87), 455–470 (1958) [Russian].
[3] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951). · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[4] Judovič, V. I., Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Fiz. 3, 1032–1066 (1963) [Russian].
[5] Kellogg, O. D., Harmonic functions and Green’s integral. Trans. Amer. Math. Soc. 13, 109–132 (1912). · JFM 43.0547.01
[6] McGrath, F., Convergence of a non-stationary plane flow of a Navier-Stokes fluid to an ideal fluid flow. Thesis, Univ. Calif. 1966.
[7] Wolibner, W., Un théorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment longue. Math. Z. 37, 698–726 (1933). · JFM 59.1447.02 · doi:10.1007/BF01474610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.