zbMATH — the first resource for mathematics

Dynamically possible motions of incompressible, isotropic, simple materials. (English) Zbl 0164.27305

Full Text: DOI
[1] Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–226 (1958). · Zbl 0083.39303 · doi:10.1007/BF00277929
[2] Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Flügge’s Handbuch der Physik, III/3. Berlin-Heidelberg-New York: Springer 1965.
[3] Carroll, M. M., Controllable deformations of incompressible simple materials. Int. J. Engng. Sci. 5, 515–525 (1967). · doi:10.1016/0020-7225(67)90038-9
[4] Fosdick, R. L., A class of dynamically possible steady motions of incompressible, isotropic, simple materials. Int. J. Non-Linear Mech. Forthcoming. · Zbl 0172.26501
[5] Coleman, B. D., & C. Truesdell, Homogeneous motions of incompressible materials. ZAMM 45, 547–551 (1965). · Zbl 0139.20203 · doi:10.1002/zamm.19650450710
[6] Singh, M., & A. C. Pipkin, Note on Ericksen’s problem. ZAMP 16, 706–709 (1965). · doi:10.1007/BF01590971
[7] Truesdell, C., Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Arch. Rational Mech. Anal. 11, 106–113 (1962). Corrigenda, ibid. · Zbl 0146.21102 · doi:10.1007/BF00253932
[8] Coleman, B. D., & W. Noll, Steady extension of incompressible simple fluids. Phys. of Fluids 5, 840–843 (1962). · Zbl 0131.40801 · doi:10.1063/1.1724455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.