×

zbMATH — the first resource for mathematics

Planes of order \(n\) with collineation groups of order \(n^ 2\). (English) Zbl 0163.42402

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Albert, A. A.: Finite noncommutative division algebras. Proc. Amer. Math. Soc.9, 928-932 (1958). · Zbl 0092.03501 · doi:10.1090/S0002-9939-1958-0103212-5
[2] Baer, R.: Homogeneity of projective planes. Amer. J. Math.64, 137-152 (1942). · Zbl 0060.32207 · doi:10.2307/2371674
[3] ?: Polarities in finite projective planes. Bull. Amer. Math. So.52, 77-93 (1946). · Zbl 0060.32308 · doi:10.1090/S0002-9904-1946-08506-7
[4] ?: Projectivities with fixed points on every line of the plane. Bull. Amer. Math. Soc.52, 373-286 (1946). · Zbl 0061.30810
[5] Bruck, R. H., andH. J. Ryser: The nonexistence of certain finite projective planes. Canad. J. Math.1, 88-93 (1949). · Zbl 0037.37502 · doi:10.4153/CJM-1949-009-2
[6] Dembowski, P.: Gruppentheoretische Kennzeichnungen der endlichen desarguesschen Ebenen. Abh. Math. Sem. Univ. Hamburg29, 92-106 (1965). · Zbl 0132.40702 · doi:10.1007/BF02996312
[7] Hall, M.: The theory of groups. New York: Macmillan 1959. · Zbl 0084.02202
[8] Hughes, D. R.: Collineations and generalized incidence matrices. Trans. Amer. Soc.86, 284-296 (1957). · Zbl 0078.34102 · doi:10.1090/S0002-9947-1957-0093730-4
[9] Ostrom, T. G.: Finite planes with a single (p, L)-transitivity. Arch. Math.15, 378-384 (1964). · Zbl 0129.12502 · doi:10.1007/BF01589216
[10] Panella, G.: Una classe di sistemi cartesiani. Atti Accad. Naz. Lincei Rend.38, 480-485 (1965). · Zbl 0141.36802
[11] Pickert, G.: Projektive Ebenen. Berlin-Göttingen-Heidelberg: Springer 1955. · Zbl 0066.38707
[12] Rosati, L.: Su una nuova classe di piani grafici. Ric. Mat.13, 39-55 (1964). · Zbl 0124.12805
[13] Segre, S.: Ovals in a finite projective plane. Canad. J. Math.7, 414-416 (1955). · Zbl 0065.13402 · doi:10.4153/CJM-1955-045-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.