×

zbMATH — the first resource for mathematics

Structure of the algebras of some free systems. (English) Zbl 0159.29002

Keywords:
quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Araki, H., andE. Woods: Representations of the C.C.R. for a nonrelativistic infinite free Bose gas. J. Math. Phys.4, 637–662 (1963). · doi:10.1063/1.1704002
[2] —-, andW. Wyss: Representations of canonical anticommutation relation. Helv. Phys. Acta37, 136–159 (1964). · Zbl 0137.23903
[3] —- Von Neumann algebras of local observables for the free scalar field. J. Math. Phys.1, 1–13 (1964). · Zbl 0151.44401 · doi:10.1063/1.1704063
[4] —- Type of Von Neumann algebras associated to the free scalar field. Progr. Theoret. Phys.32, 956–961 (1964). · Zbl 0132.43901 · doi:10.1143/PTP.32.956
[5] Diximier, J.: Les algèbres d’operateurs dans l’espace Hilbertien. Paris: Gauthier-Villars 1957.
[6] Segal, I.: Mathematical problems of relativistic physics. Am. Math. Soc. Publications, Providence (1963). · Zbl 0112.45307
[7] Guichardet, M. A.: Produits tensoriels infinis. Ann. Ecole Norm. Super.83, 1–15 (1966). · Zbl 0154.38905
[8] Von Neumann, J.: Charakterisierung des Spektrums eines Integral Operators. Actualités Scient. et Ind. No. 229 (1935). · Zbl 0011.30801
[9] —- On infinite direct products. Comp. Math.6, 1–77 (1938). · JFM 64.0377.01
[10] —- Rings of operators III. Ann. Math.41, 94–162 (1940). · Zbl 0023.13303 · doi:10.2307/1968823
[11] Bures, D.: Certain factors constructed as infinite tensor products. Com. Math.15, 169–191 (1963). · Zbl 0144.37803
[12] Powers, R.: Representation of uniformly hyperfinite algebras. (To be published). · Zbl 0157.20605
[13] Segal, I.: A class of operator algebras which are determined by groups. Duke Math. Journal18, 221–265 (1951). · Zbl 0045.38601 · doi:10.1215/S0012-7094-51-01817-0
[14] Störmer, E.: Types of invariant algebras associated with extremal invariant states. (To be published.)
[15] Doplicher, S., D. Kastler, andD. Robinson: Covariance algebras. Commun. Math. Phys.3, 1–28 (1966). · Zbl 0152.23803 · doi:10.1007/BF01645459
[16] Jost, R.: General theory of quantized fields. Am. Math. Soc. Publications, Providence (1966). · Zbl 0127.19105
[17] Segal, I., andR. Goodman: Anti-locality of certain invariant operators. J. Math. Mech.14, 629–638 (1965). · Zbl 0151.44201
[18] Dunford, N., andJ. Schwartz: Linear operator, part II. XII, 7, 7. New York: Interscience Publishers 1958. · Zbl 0084.10402
[19] Schweber, S.: Relativistic quantum field theory. Evanston: Row Peterson & Co. 1961. · Zbl 0111.43102
[20] Newton, R., andE. Wigner: Localized states of elementary systems. Rev. Mod. Phys.21, 400–406 (1949). · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[21] Kadison, R.: Types of Von Neumann algebras in quantum field theory. J. Math. Phys.4, 1511–1517 (1963). · Zbl 0127.19201 · doi:10.1063/1.1703932
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.