×

zbMATH — the first resource for mathematics

Geometric programming: a unified duality theory for quadratically constrained quadratic programs and \(l_ p\)-constrained \(l_ p\)- approximation problems. (English) Zbl 0155.28502

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard J. Duffin, Elmor L. Peterson, and Clarence Zener, Geometric programming: Theory and application, John Wiley & Sons, Inc., New York-London-Sydney, 1967. · Zbl 0236.90062
[2] R. J. Duffin and Elmor L. Peterson, Duality theory for geometric programming, SIAM J. appl. Math. 14 (1966), 1307 – 1349. · Zbl 0203.21902 · doi:10.1137/0114105 · doi.org
[3] David Gale, Harold W. Kuhn, and Albert W. Tucker, Linear programming and the theory of games, Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13, John Wiley & Sons, Inc., New York, N. Y.,; Chapman & Hall, Ltd., London, 1951, pp. 317 – 329. · Zbl 0045.09709
[4] G. B. Dantzig and A. Orden, Duality theorems, RAND Report RM-1265, The RAND Corporation, Santa Monica, Calif., October, 1953.
[5] Jack B. Dennis, Mathematical programming and electrical networks, The Technology Press of The Massachusetts Institute of Technology, Cambridge, Mass.; John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959.
[6] W. S. Dorn, Duality in quadratic programming, Quart. Appl. Math. 18 (1960/1961), 155 – 162. · Zbl 0101.37003
[7] W. S. Dorn, A duality theorem for convex programs, IBM J. Res. Develop 4 (1960), 407 – 413. · Zbl 0095.14503 · doi:10.1147/rd.44.0407 · doi.org
[8] Philip Wolfe, A duality theorem for non-linear programming, Quart. Appl. Math. 19 (1961), 239 – 244. · Zbl 0109.38406
[9] M. A. Hanson, A duality theorem in non-linear programming with non-linear constraints, Austral. J. Statist. 3 (1961), 64 – 72. · Zbl 0102.15601
[10] O. L. Mangasarian, Duality in nonlinear programming, Quart. Appl. Math. 20 (1962/1963), 300 – 302. · Zbl 0113.35703
[11] Pierre Huard, Dual programs, Recent advances in mathematical programming, McGraw-Hill, New York, 1963, pp. 55 – 62. · Zbl 0225.90038
[12] Richard W. Cottle, Symmetric dual quadratic programs, Quart. Appl. Math. 21 (1963/1964), 237 – 243. · Zbl 0127.36802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.