×

zbMATH — the first resource for mathematics

Lex-subgroups of lattice-ordered groups. (English) Zbl 0155.05902

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] A. Bigard: Étude de certaines réalisations des groupes réticulés. C. R. Acad. Sci. Paris 262 (1966) 853-855. · Zbl 0138.02801
[2] R. Byrd: Tulane Disertation 1966.
[3] P. Conrad: Some structure theorems for lattice-ordered groups. Trans. Amer. Math. Soc. 99 (1961) 1-29. · Zbl 0099.25401 · doi:10.2307/1993391
[4] P. Conrad: The lattice of all convex \(l\)-subgroups of a lattice-ordered group. Czech. Math. J. 15 (1965) 101-132. · Zbl 0135.06301 · eudml:12252
[5] L. Fuchs: Partially ordered algebraic systems. Pergamon Press 1963. · Zbl 0137.02001
[6] A. Lavis: Sur les quotients totalement ordonnés d’un group linearirement ordonné. Bull. Soc. Royal Sciences Liege, 32 (1963) 204-208. · Zbl 0122.27902
[7] D. B. McAlister: On Multilattice groups II. Proc. Camb. Phil. Soc. 62 (1966) 149-164. · Zbl 0138.02702 · doi:10.1017/S0305004100039682
[8] F. Šik: Zur theorie der halbgeordneten Gruppen. Czech. Math. J. 6 (1956) 1 - 25. · Zbl 0075.01504 · eudml:11816
[9] F. Šik: Über subdirecte summen geordneter Gruppen. Czech. Math. J. 10 (1960) 400 - 424. · Zbl 0102.26501 · eudml:12041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.