×

zbMATH — the first resource for mathematics

On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. (English) Zbl 0149.44606

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Velte, W., Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen. Arch. Rational Mech. Anal. 16, 97–125 (1964). · Zbl 0131.41808 · doi:10.1007/BF00281334
[2] Leray, J., Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 9, 1–82 (1933). See also: Les problèmes non linéaires. Enseignement Math. 35, 139–15l (1936). · Zbl 0006.16702
[3] Finn, R., On steady-state solutions of the Navier-Stokes partial differential equations. Arch. Rational Mech. Anal. 3, 381–396 (1959). · Zbl 0104.42305 · doi:10.1007/BF00284188
[4] Finn, R., Stationary solutions of the Navier-Stokes equations. Proc. Symp. Appl. Math. 19 (1965), Amer. Math. Soc. · Zbl 0148.21602
[5] Fujita, H., On the existence and regularity of the steady-state solutions of the Navier-Stokes equations. J. Fac. Sci., Univ. of Tokyo 9, 59–102 (1961). · Zbl 0111.38502
[6] Oseen, C. W., Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft m.b.H. 1927. · JFM 53.0773.02
[7] Finn, R., Estimates at infinity for stationary solutions of the Navier-Stokes equations. Bull. Math. de la Soc. Sci. Math. Phys. de la R.P.R. 3(51), 387–418 (1959). See also: Amer. Math. Soc. Proc. Symposia Pure Math. 4, 143–148 (1961).
[8] Stokes, G. G., On the theories of the internal friction of fluids in motion, etc. Math. and Phys. Papers, vol. I, p. 75 (1845).
[9] Chang, I-Dee, & R. Finn, On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox. Arch. Rational Mech. Anal. 7, 388–401 (1961). · Zbl 0104.42401 · doi:10.1007/BF00250771
[10] Finn, R., On the Stokes Paradox and Related Questions. In: Nonlinear Problems. Madison: The University of Wisconsin Press 1963. · Zbl 0115.20902
[11] Edwards, J. E., On the Existence of Solutions of the Steady-State Navier-Stokes Equations for a Class of Non-Smooth Boundary Data. Dissertation, Stanford University, 1963; Tech. Rep. Lockheed Missiles and Space Co., Sunnyvale, Calif. 6-90-63-70 (1963).
[12] Payne, L. E., & H. F. Weinberger, Note on a lemma of Finn and Gilbarg. Acta Math. 98, 297–299 (1957). · Zbl 0078.40002 · doi:10.1007/BF02404477
[13] Finn, R., On the steady-state solutions of the Navier-Stokes equations. III. Acta Math. 105, 197–244 (1961). · Zbl 0126.42203 · doi:10.1007/BF02559590
[14] Rellich, F., Ein Satz über mittlere Konvergenz. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1930). · JFM 56.0224.02
[15] Odqvist, F. K. G., Die Randwertaufgaben der Hydrodynamik zäher Flüssig-keiten. Stockholm: P.A. Norstedt & Söner 1928. See also: Math. Z. 32, 329–375 (1930).
[16] Ladyzhenskaia, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach (Transl. from Russian).
[17] Ladyzhenskaia, O. A., Investigation of the Navier-Stokes equations in the case of stationary motion of an incompressible fluid. Uspehi Mat. Nauk 3, 75–97 (1959).
[18] Berker, R., Sur les forces exercées par un fluide visqueux sur un obstacle. Rend. Circ. Mat. Palermo 2, 260–280 (1952). · Zbl 0047.43702 · doi:10.1007/BF02847790
[19] Kaplun, S., & P. A. Lagerstrom, Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J. Math. and Mech. 6, 585–593 (1957). · Zbl 0080.18501
[20] Proudman, I., & J. R. A. Pearson, Expansion at small Reynolds’ numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237–262 (1957). · Zbl 0077.39103 · doi:10.1017/S0022112057000105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.