×

zbMATH — the first resource for mathematics

Convergent series expansions for quasi-periodic motions. (English) Zbl 0149.29903

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arnold, V. I.: Small Divisors I, On mappings of a circle onto itself. Izvest. Akad. Nauk., Ser. Mat.25, No. 1, 21-86 (1961).
[2] ?? Proof ofA. N. Kolmogorov’s theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Uspekhi Mat. Nauk U.S.S.R.18, Ser. 5 (113), 13-40 (1963).
[3] Charlier, C. L.: Die Mechanik des Himmels. Vol.2, Section 10, § 5, § 6. Leipzig 1907. · JFM 38.0949.11
[4] Jacobson, N.: Lie Algebras. New York-London: Interscience 1962. · Zbl 0121.27504
[5] Kolmogorov, A. N.: Doklady Akad. Nauk U.S.S.R.98, 527-530 (1954).
[6] Melnikov, V. K.: On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function. Preprint, Joint Inst. for Nucl. Research, Dubna, 1965, also Doklady Akad. Nauk S.S.S.R.165, No. 6, 1245-1248 (1965).
[7] Moser, J.: Some aspects of non-linear differential equations. 6 lectures, Intl. Math. Summer Cr., held at Varenna, Italy, 1964, to be published in Ann. Scuola Normale Sup. Pisa 1966.
[8] – On the theory of quasi-periodic motions. Lectures held at Stanford Univ., Aug. 1965, SIAM Review8, No. 2, 145-172 (1966).
[9] Poincaré, H.: Méthodes nouvelles de la mécanique célèste, Vol.2, Chap.9. Paris: Gauthier-Villars 1893.
[10] Pontrjagin, L. S.: Topologische Grouppen, Vol.2, Chap. 10. German translation. Leipzig: Teubner 1958.
[11] Siegel, C. L.: Vorlesungen über Himmelsmechanik. § 24, p. 168. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0098.23601
[12] Sternberg, S.: Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech.10, 451-474 (1961). · Zbl 0131.26802
[13] von Zeipel, H.: Arkiv Mat. Astron. Fysik11, 12, 13 (1916-1917).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.