zbMATH — the first resource for mathematics

Bounds on the error of Gauss-type quadratures. (English) Zbl 0149.12002

Full Text: DOI EuDML
[1] Krylov, V.: Approximate calculation of integrals. New York: McMillan 1962 (translated by A. H.Stroud; first printing in Russian, 1959) · Zbl 0089.27604
[2] Davis, P. J.: Errors of numerical approximation for analytic functions. Survey of numerical analysis, edited byJ. Todd. New York: McGraw Hill 1962.
[3] Hammerlin, G.: Ableitungsfreie Schranken für Quadraturfehler. Num. Math.5, 226–233 (1963). · Zbl 0114.27101 · doi:10.1007/BF01385893
[4] Wilf, H.: Exactness conditions in numerical quadrature. Num. Math.5, 315–319 (1964). · Zbl 0123.12203 · doi:10.1007/BF01386079
[5] McNamee, J.: Error bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae. Math. Comput.18, 368–381 (1964). · Zbl 0125.36202 · doi:10.1090/S0025-5718-1964-0185804-1
[6] Erdelyi, A.,: Higher transcendental functions, Vol. 2. New York: et al. McGraw Hill 1953.
[7] – andM. Wyman: The asymptotic evaluation of certain integrals. Arch. Rational Mech. Anal.14, 217–260 (1963). · Zbl 0168.37903 · doi:10.1007/BF00250704
[8] National Bureau of Standards: Handbook of mathematical functions. Applied Math. Series, Vol. 55 (1964).
[9] Meinardus, G.: Approximation von Funktionen und ihre numerische Behandlung. Berlin- Göttingen-Heidelberg: Springer 1964. · Zbl 0124.33103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.