zbMATH — the first resource for mathematics

Solutio généralis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in déformationibus valde magnis. (French) Zbl 0146.21102
Arch. Ration. Mech. Anal. 11, 106-113 (1962); addendum ibid. 12, 427-428 (1963).

Full Text: DOI
[1] [1950] Green, A. E., & R. T. Shield: Finite elastic deformation of incompressible isotropic bodies. Proc. R. Soc. London A 202, 407-419. · Zbl 0039.41007 · doi:10.1098/rspa.1950.0109
[2] [1954] Ericksen, J. L.: Deformations possible in every isotropic incompressible, perfectly elastic body. Z. angew. Math. Phys. 5, 466-489. · Zbl 0059.17509 · doi:10.1007/BF01601214
[3] [1960, 1] Knowles, J. K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Applied Math. 18, 71-77. · Zbl 0099.19102
[4] [1960, 2] Truesdell, C., & R. A. Toupin: The classical field theories. Flügge’s Handbuch der Physik III/1, 226-793. Berlin-Göttingen-Heidelberg: Springer.
[5] [1961] Green, A. E.: Torsional vibrations of an initially stressed circular cylinder. Problems of Continuum Mechanics (Muskhelisvili Anniv. Vol.), 148-154.
[6] [1962] Knowles, J. K.: On a class of oscillations in the finite-deformation theory of elasticity. J. Applied Mech. 29, 283-286. · Zbl 0111.37601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.